Когда я звоню print_test_accuracy()
, у меня всегда заканчивается ОЗУ, и мой jupyter перестает отвечать на запросы, а ядро kaggle перезапускается. Я уже пытался загружать свои изображения партиями с помощью функции ниже, но все же столкнулся с этой проблемой. Нужно ли каким-то образом выгружать пакеты данных из ОЗУ после их передачи в tf.Session().run()
?
test_batch_size = 64
def load_image_batch(image_ids):
imgs = []
for image_id in image_ids:
file_path = image_id + ".jpg"
img = cv2.imread(IMG_PATH + file_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
imgs.append(img)
image_batch = np.ndarray(shape=(len(imgs), img_height, img_width, 3),dtype = np.float32)
for i in range(len(imgs)):
image_batch[i] = imgs[i]
return image_batch
def print_test_accuracy():
# Number of images in the test-set.
num_test = x_test.shape[0]
# Allocate an array for the predicted classes which
# will be calculated in batches and filled into this array.
cls_pred = np.zeros(shape=num_test, dtype=np.int)
# Now calculate the predicted classes for the batches.
# We will just iterate through all the batches.
# There might be a more clever and Pythonic way of doing this.
# The starting index for the next batch is denoted i.
i = 0
while i < num_test:
# The ending index for the next batch is denoted j.
j = min(i + test_batch_size, num_test)
# Get the images from the test-set between index i and j.
image_ids = df_test['image_id'][i:j]
images = load_image_batch(image_ids)
# Get the associated labels.
labels = y_test[i:j]
# Create a feed-dict with these images and labels.
feed_dict = {x: images, y_true: labels}
# Calculate the predicted class using TensorFlow.
cls_pred[i:j] = session.run(y_pred_cls, feed_dict=feed_dict)
# Set the start-index for the next batch to the
# end-index of the current batch.
i = j
# Convenience variable for the true class-numbers of the test-set.
cls_true = y_test_cls
# Create a boolean array whether each image is correctly classified.
correct = (cls_true == cls_pred)
# Calculate the number of correctly classified images.
# When summing a boolean array, False means 0 and True means 1.
# correct_sum = correct.sum()
correct_sum = sum(1 for boo in correct if boo == True)
# Classification accuracy is the number of correctly classified
# images divided by the total number of images in the test-set.
acc = float(correct_sum) / num_test
# Print the accuracy.
msg = "Accuracy on Test-Set: {0:.1%} ({1} / {2})"
print(msg.format(acc, correct_sum, num_test))