TypeError: Тензор недоступен, если включено равенство Тензорных. Вместо этого используйте в качестве ключа тензор.экспериментальный_реф ().
... отображается при запуске кода ниже.
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.models import load_model
print(tf.__version__)
seed_num=1
data_path = 'Caltech-256/'
batch_size = 80 # the number of images to load per iteration
target_size=(64,64) # pixel size of each image
num_pixels_and_channels = (64,64,3) # pixels and channels
input_shape = (1,64,64,3)
layer = 1
feature = 0
val_data_gen_aug_rotate = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255,
validation_split=0.1)
val_img = val_data_gen_aug_rotate.flow_from_directory(data_path,
subset='validation',
color_mode='rgb',
target_size=target_size,
batch_size=batch_size,
class_mode='categorical',
seed=seed_num)
sample_imgs_val, sample_labels_val = next(val_img)
model = load_model("Models/ex_13_epoch_4_3563_336.h5")
sess = tf.compat.v1.Session()
input_layer = model.layers[0].input
output_layer = model.layers[layer].output
outputs = sess.run(output_layer, feed_dict = {input_layer : sample_imgs_val})
Проблема с кодом outputs = sess.run(output_layer, feed_dict = {input_layer : sample_imgs_val})
. Что является причиной ошибки и как ее можно исправить?
Я использую tenorflow версии 2.1.0 на процессоре через Jupyter Notebook.