import random, timeit
#Qucik sort
def quick_sort(A,first,last):
global Qs,Qc
if first>=last: return
left, right= first+1, last
pivot = A[first]
while left <= right:
while left <=last and A[left]<pivot:
Qc= Qc+1
left= left + 1
while right > first and A[right] >= pivot:
Qc=Qc+1
right = right -1
if left <= right:
A[left],A[right]=A[right],A[left]
Qs = Qs+1
left= left +1
right= right-1
A[first],A[right]=A[right],A[first]
Qs=Qs+1
quick_sort(A,first,right-1)
quick_sort(A,right+1,last)
#Merge sort
def merge_sort(A, first, last): # merge sort A[first] ~ A[last]
global Ms,Mc
if first >= last: return
middle = (first+last)//2
merge_sort(A, first, middle)
merge_sort(A, middle+1, last)
B = []
i = first
j = middle+1
while i <= middle and j <= last:
Mc=Mc+1
if A[i] <= A[j]:
B.append(A[i])
i += 1
else:
B.append(A[j])
j += 1
for i in range(i, middle+1):
B.append(A[i])
Ms=Ms+1
for j in range(j, last+1):
B.append(A[j])
for k in range(first, last+1): A[k] = B[k-first]
#Heap sort
def heap_sort(A):
global Hs, Hc
n = len(A)
for i in range(n - 1, -1, -1):
while 2 * i + 1 < n:
left, right = 2 * i + 1, 2 * i + 2
if left < n and A[left] > A[i]:
m = left
Hc += 1
else:
m = i
Hc += 1
if right < n and A[right] > A[m]:
m = right
Hc += 1
if m != i:
A[i], A[m] = A[m], A[i]
i = m
Hs += 1
else:
break
for i in range(n - 1, -1, -1):
A[0], A[i] = A[i], A[0]
n -= 1
k = 0
while 2 * k + 1 < n:
left, right = 2 * k + 1, 2 * k + 2
if left < n and A[left] > A[k]:
m = left
Hc += 1
else:
m = k
Hc += 1
if right < n and A[right] > A[m]:
m = right
Hc += 1
if m != k:
A[k], A[m] = A[m], A[k]
k = m
Hs += 1
else:
break
#
def check_sorted(A):
for i in range(n-1):
if A[i] > A[i+1]: return False
return True
#
#
Qc, Qs, Mc, Ms, Hc, Hs = 0, 0, 0, 0, 0, 0
n = int(input())
random.seed()
A = []
for i in range(n):
A.append(random.randint(-1000,1000))
B = A[:]
C = A[:]
print("")
print("Quick sort:")
print("time =", timeit.timeit("quick_sort(A, 0, n-1)", globals=globals(), number=1))
print(" comparisons = {:10d}, swaps = {:10d}\n".format(Qc, Qs))
print("Merge sort:")
print("time =", timeit.timeit("merge_sort(B, 0, n-1)", globals=globals(), number=1))
print(" comparisons = {:10d}, swaps = {:10d}\n".format(Mc, Ms))
print("Heap sort:")
print("time =", timeit.timeit("heap_sort(C)", globals=globals(), number=1))
print(" comparisons = {:10d}, swaps = {:10d}\n".format(Hc, Hs))
assert(check_sorted(A))
assert(check_sorted(B))
assert(check_sorted(C))
Я сделал код, который говорит, сколько времени занимает сортировка списка размером n (ввод числа) с 3 способами сортировки. Однако я обнаружил, что мой результат довольно неожиданный.
Quick sort:
time = 0.0001289689971599728
comparisons = 474, swaps = 168
Merge sort:
time = 0.00027709499408956617
comparisons = 541, swaps = 80
Heap sort:
time = 0.0002578190033091232
comparisons = 744, swaps = 478
Quick sort:
time = 1.1767549149953993
comparisons = 3489112, swaps = 352047
Merge sort:
time = 0.9040642600011779
comparisons = 1536584, swaps = 77011
Heap sort:
time = 1.665754442990874
comparisons = 2227949, swaps = 1474542
Quick sort:
time = 4.749891302999458
comparisons = 11884246, swaps = 709221
Merge sort:
time = 3.1966246420051903
comparisons = 3272492, swaps = 154723
Heap sort:
time = 6.2041203819972
comparisons = 4754829, swaps = 3148479
Как видите, мои результаты сильно отличаются от того, что я узнал. Подскажите, пожалуйста, почему быстрая сортировка не самая быстрая в моем коде? и почему слияние является самым быстрым.