Привет всем - у меня проблемы с установкой модели Стэна с использованием RStan. Я чувствую, что есть проблема с тем, как я отформатировал свои данные. Мои данные изначально были в data.frame, так как они были созданы с использованием модели mechanisti c. Я переформатировал свои данные в виде списка, но я новичок в этом, так что есть большая вероятность, что я все испортил. Вот история до сих пор (PS Извините, если этот пост не отформатирован должным образом!):
library(rstan)
library(gdata)
library(bayesplot)
write("// Stan Model; code the actual model in Stan
functions{
real[] dZ_dt(real t, // Time
real[] Z, // System state {Parasite, Host}
real[] alpha, // Parameters
real[] x_r, // Unused data (?)
int[] x_i){
real P = Z[1]; // System state coded as an array, such that Z = (P,H)
real H = Z[2];
real r = alpha[1]; // Parameters of the system, in order they appear
real O = alpha[2];
real h = alpha[3];
real b = alpha[4];
real c = alpha[5];
real u = alpha[6];
real dP_dt = P*r - H*(O*P/1 + O*P*h); // Deterministic mechanistic model
real dH_dt = b + H*(c*(O*P/1 + O*P*h)-u);
return{dP_dt,dH_dt}; // Return the system state
}
}
data{
int<lower=0>N; // Define N as non-negative integer
real ts[N]; // Assigns time points to N (I think?)
real y_init[2];
real<lower=0>y[N,2]; // Define y as real and non-negative
}
parameters{
real<lower=0>alpha[6]; // Make all items in alpha non-neg
real<lower=0>Z_init[2]; // Initial population size non-neg
real<lower=0>sigma[2]; // Error term non-negative
}
transformed parameters{
real Z[N,2]
= integrate_ode_rk45(dZ_dt,Z_init,0,ts,alpha,rep_array(0.0,0),rep_array(0,0),1e-6,1e-5,2000);
}
model{
alpha[{1}]~uniform(0,10);
alpha[{2}]~uniform(0,1);
alpha[{3}]~uniform(0,60);
alpha[{4}]~uniform(0,100);
alpha[{5}]~uniform(0,1);
alpha[{6}]~uniform(0,1);
sigma~lognormal(-1,1);
Z_init~lognormal(log(10),1);
for (k in 1:2){
y_init[k]~lognormal(log(Z_init[k]),sigma[k]);
y[ ,k]~lognormal(log(Z[ ,k]),sigma[k]);
}
}",
"Stan_Model_TypeII.stan")
stanc("Stan_Model_TypeII.stan") # To check that we wrote a file (I think we did?)
Stan_Model_TypeII <- stan_model("Stan_Model_TypeII.stan")
# Squeezing the data into a form that Stan gets
N <- length(Stoch_Data_TypeII$t)-1 # N is 1952 which makes sense bc length of DF is 1953
ts <- 1:N
y_init <- c(Stoch_Data_TypeII$P[1], Stoch_Data_TypeII$H[1]) # Initial states, P = 1; H = 18
y <- as.matrix(Stoch_Data_TypeII[2:(N+1),2:3])
y <- cbind(y[,2],y[,1]); # This worked, sick; where y[,1] is H, and y[,2] is P
Stan_StochData_TypeII <- list(N,ts,y_init,y)
# Fitting the data to the model
fit <- stan(file = "Stan_Model_TypeII.stan",
data = Stan_StochData_TypeII,
warmup = 500, iter = 1000, chains = 2, cores = 1, thin = 1,
algorithm = "HMC",
diagnostic_file = "TypeII_Fitting_Output.R",
seed = 1996, verbose = TRUE)
А вот прогресс, достигнутый на модели:
TRANSLATING MODEL 'Stan_Model_TypeII' FROM Stan CODE TO C++ CODE NOW.
successful in parsing the Stan model 'Stan_Model_TypeII'.
CHECKING DATA AND PREPROCESSING FOR MODEL 'Stan_Model_TypeII' NOW.
COMPILING MODEL 'Stan_Model_TypeII' NOW.
STARTING SAMPLER FOR MODEL 'Stan_Model_TypeII' NOW.
И вот что читает код ошибки:
Error in new_CppObject_xp(fields$.module, fields$.pointer, ...) :
Exception: variable does not exist; processing stage=data initialization; variable name=N; base type=int (in 'model1b35f2189f6_Stan_Model_TypeII' at line 25)
failed to create the sampler; sampling not done