Я получаю сообщение об ошибке set_weights, но не могу это исправить. Я добавил вес как униформу, но он не принимает его. Я пытаюсь сделать ANN с двумя скрытыми слоями и двоичным уровнем вывода. код:
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('Churn_Modelling.csv')
X = dataset.iloc[:, 3: 13].values
y = dataset.iloc[:, -1].values
#Encoding Categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.compose import ColumnTransformer
labelencoder_X_1 = LabelEncoder()
X[:, 1] = labelencoder_X_1.fit_transform(X[:, 1])
labelencoder_X_2 = LabelEncoder()
X[:, 2] = labelencoder_X_2.fit_transform(X[:, 2])
ct = ColumnTransformer([('one_hot_encoder', OneHotEncoder(categories='auto'), [1])],remainder='passthrough')
onehotencoder = OneHotEncoder(categories=[1])
X = ct.fit_transform(X)
X = X[:, 1:]
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
# Part 2 - Kares
import keras
from keras.models import Sequential
from keras.layers import Dense
# Initialising the ANN
classifier = Sequential()
# Add input layer and first hidden layer
classifier.add(Dense(units=6, weights='uniform', activation='relu', input_dim=11))
# Second hidden layer
classifier.add(Dense(units=6, weights='uniform', activation='relu'))
# Output layer
classifier.add(Dense(units=1, weights='uniform', activation='sigmoid'))
# Compiling the ANN
classifier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
И ошибка, которую я получаю:
ValueError: You called `set_weights(weights)` on layer "dense_1" with a weight list of length 7, but the layer was expecting 0 weights. Provided weights: uniform...
В чем проблема? Спасибо.