Размер Hex в hexbins Matplotlib на основе плотности ближайших точек - PullRequest
9 голосов
/ 07 апреля 2020

У меня есть следующий код, который выдает следующий рисунок

import numpy as np
np.random.seed(3)
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame()
df['X'] = list(np.random.randint(100, size=100)) + list(np.random.randint(30, size=100))
df['Y'] = list(np.random.randint(100, size=100)) + list(np.random.randint(30, size=100))

df['Bin'] = df.apply(lambda row: .1 if row['X'] < 30 and row['Y'] < 30 else .9, axis=1)

fig, ax = plt.subplots(figsize=(10,10))
plt.scatter(df['X'], df['Y'])

scatter

Я получил данные с помощью hexbins, как указано ниже

from matplotlib import cm

fig, ax = plt.subplots(figsize=(10,10))
hexbin = ax.hexbin(df['X'], df['Y'], C=df['Bin'], gridsize=20, cmap= cm.get_cmap('RdYlBu_r'),edgecolors='black')
plt.show()

hexbins

Я бы хотел изменить размер шестиугольников на основе плотности точек, нанесенных на область, которую покрывает шестиугольник. Например, шестиугольники в левом нижнем углу (где точки компактны) будут больше, чем шестиугольники везде (где точки редки). Есть ли способ сделать это?

Редактировать: я пробовал это решение , но я не могу понять, как раскрасить гексы на основе df ['Bin'] или как установить минимальный и максимальный размер гексагона .

from matplotlib.collections import PatchCollection
from matplotlib.path import Path
from matplotlib.patches import PathPatch
fig, ax = plt.subplots(figsize=(10,10))
hexbin = ax.hexbin(df['X'], df['Y'], C=df['Bins'], gridsize=20, cmap= cm.get_cmap('RdYlBu_r'),edgecolors='black')
def sized_hexbin(ax,hc):
    offsets = hc.get_offsets()
    orgpath = hc.get_paths()[0]
    verts = orgpath.vertices
    values = hc.get_array()
    ma = values.max()
    patches = []
    for offset,val in zip(offsets,values):
        v1 = verts*val/ma+offset
        path = Path(v1, orgpath.codes)
        patch = PathPatch(path)
        patches.append(patch)

    pc = PatchCollection(patches, cmap=cm.get_cmap('RdYlBu_r'), edgecolors='black')
    pc.set_array(values)
    ax.add_collection(pc)
    hc.remove()

sized_hexbin(ax,hexbin)
plt.show()

proposed solution

1 Ответ

3 голосов
/ 12 апреля 2020

Вы можете потратить некоторое время на понимание цветового картирования.

    import numpy as np
    np.random.seed(3)
    import pandas as pd
    import matplotlib.pyplot as plt
    from matplotlib.collections import PatchCollection
    from matplotlib.path import Path
    from matplotlib.patches import PathPatch
    df = pd.DataFrame()
    df['X'] = list(np.random.randint(100, size=100)) + list(np.random.randint(30, size=100))
    df['Y'] = list(np.random.randint(100, size=100)) + list(np.random.randint(30, size=100))

    df['Bin'] = df.apply(lambda row: .1 if row['X'] < 30 and row['Y'] < 30 else .9, axis=1)

    #fig, ((ax1, ax2)) = plt.subplots(1, 2, sharex=True, sharey=True)
    ax1 = plt.scatter(df['X'], df['Y'])

    fig,ax2 = plt.subplots(figsize=(10,10))
    hexbin = ax2.hexbin(df['X'], df['Y'], C=df['Bin'], gridsize=20,edgecolors='black',cmap= 'RdBu', reduce_C_function=np.bincount) #**

    def sized_hexbin(ax,hc):
        offsets = hc.get_offsets()
        orgpath = hc.get_paths()[0]
        verts = orgpath.vertices
        values = hc.get_array()
        ma = values.max()
        patches = []
        for offset,val in zip(offsets,values):
            v1 = verts*val/ma + offset
            path = Path(v1, orgpath.codes)
            patch = PathPatch(path)
            patches.append(patch)

        pc = PatchCollection(patches, cmap= 'RdBu', edgecolors='black')
        pc.set_array(values)

        ax.add_collection(pc)

        hc.remove()

    sized_hexbin(ax2,hexbin)
    cb = plt.colorbar(hexbin, ax=ax2)

    plt.show()

To plot the chart based on df['bins'] values - 

Need to change the reduce_C_function in #** marked line -

    hexbin = ax2.hexbin(df['X'], df['Y'], C=df['Bin'], gridsize=20,edgecolors='black',cmap= 'RdBu', reduce_C_function=np.sum)

[![enter image description here][2]][2]


  [1]: https://i.stack.imgur.com/kv0U4.png
  [2]: https://i.stack.imgur.com/mb0gD.png

# Another variation of the chart :

# Where size is based on count of points in the bins and color is based on values of the df['bin']./ Also added if condition to control minimum hexbin size.


import numpy as np
np.random.seed(3)
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.collections import PatchCollection
from matplotlib.path import Path
from matplotlib.patches import PathPatch
from functools import partial

mycmp = 'coolwarm'

df = pd.DataFrame()
df['X'] = list(np.random.randint(100, size=100)) + list(np.random.randint(30, size=100))
df['Y'] = list(np.random.randint(100, size=100)) + list(np.random.randint(30, size=100))

df['Bin'] = df.apply(lambda row: .1 if row['X'] < 30 and row['Y'] < 30 else .9, axis=1)

#fig, ((ax1, ax2)) = plt.subplots(1, 2, sharex=True, sharey=True)
ax1 = plt.scatter(df['X'], df['Y'])


fig,ax2 = plt.subplots(figsize=(10,10))
hexbin = ax2.hexbin(df['X'], df['Y'], C=df['Bin'], gridsize=15,edgecolors='black',cmap= newcmp , reduce_C_function=np.bincount)
hexbin2 = ax2.hexbin(df['X'], df['Y'], C=df['Bin'], gridsize=15,edgecolors='black',cmap= newcmp , reduce_C_function=np.mean)

def sized_hexbin(ax,hc,hc2):
    offsets = hc.get_offsets()
    orgpath = hc.get_paths()[0]
    verts = orgpath.vertices
    values1 = hc.get_array()
    values2 = hc2.get_array()
    ma = values1.max()
    patches = []

    for offset,val in zip(offsets,values1):
        # Adding condition for minimum size 
        if (val/ma) < 0.2:
            val_t = 0.2
        else:
            val_t = val/ma
        v1 =  verts*val_t + offset
        path = Path(v1, orgpath.codes)
        print(path)
        patch = PathPatch(path)
        patches.append(patch)

    pc = PatchCollection(patches, cmap=  newcmp)  #edgecolors='black'
    pc.set_array(values2)

    ax.add_collection(pc)
    hc.remove()
    hc2.remove()


sized_hexbin(ax2,hexbin,hexbin2)
cb = plt.colorbar(hexbin2, ax=ax2)

plt.xlim((-5, 100))
plt.ylim((-5, 100))

plt.show()

enter image description here

enter image description here

enter image description here

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...