Высокое использование оперативной памяти при запуске sklearn.model_selection.cross_val_score и возвращает NaN - PullRequest
0 голосов
/ 17 марта 2020

Я работаю с Керасом и Склеарном, чтобы построить мою модель ANN. Я следовал учебному пособию из курса Udemy, и он прекрасно работает, пока я не установлю более новую версию всех пакетов Anaconda. Каждый раз, когда я запускаю cross_val_score для оценки точности, использование ОЗУ увеличивается до 100%, и это заставляет мой компьютер не отвечать. Когда он закончится, только три строки показывают значение точности.

Вот мой код:

# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

# Importing the dataset
dataset = pd.read_csv('Churn_Modelling.csv')
X = dataset.iloc[:, 3:13].values
y = dataset.iloc[:, 13].values

# Encoding categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.compose import ColumnTransformer
labelencoder_X_1 = LabelEncoder()
X[:, 1] = labelencoder_X_1.fit_transform(X[:, 1])
labelencoder_X_2 = LabelEncoder()
X[:, 2] = labelencoder_X_2.fit_transform(X[:, 2])
ct = ColumnTransformer([('one_hot_encoder', OneHotEncoder(categories = 'auto'), [1])], remainder = 'passthrough')
X = ct.fit_transform(X)
X = X[:, 1:]

# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)

# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

# Making the ANN
# Importing Keras
import keras
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout

# Initializing ANN
classifier = Sequential()

# Adding the input layer and the first hidden layer with dropout
classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu', input_dim = 11))
classifier.add(Dropout(rate = 0.1))

# Adding the second hidden layer
classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu'))
classifier.add(Dropout(rate = 0.1))

# Adding the final layer
classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmoid'))

# Compiling the ANN
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])

# Fitting the ANN to the training set
classifier.fit(X_train, y_train, batch_size = 10, epochs = 100)

# Predicting the test dataset results
y_pred = classifier.predict(X_test)
y_pred = (y_pred > 0.5) 

# Predicting a single new observation
new_prediction = classifier.predict(sc.transform(np.array([[0, 0, 600, 1, 40, 3, 60000, 2, 1, 1, 50000]])))
new_prediction = (new_prediction > 0.5)

# Making the confusion matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)

# Evaluating the ANN
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import cross_val_score
from keras.models import Sequential
from keras.layers import Dense
def build_classifier():
    classifier = Sequential()
    classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu', input_dim = 11))
    classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu'))
    classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmoid'))
    classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
    return classifier
classifier = KerasClassifier(build_fn = build_classifier, batch_size = 10, epochs = 100)
accuracies = cross_val_score(estimator = classifier, X = X_train, y = y_train, cv = 10, n_jobs = -1)

Переменная accuracies должна показывать значение точности для каждой эпохи.

In[10]: accuracies
Out[10]: 
array([       nan,        nan,        nan,        nan,        nan,
              nan, 0.83499998, 0.82625002,        nan, 0.84125   ])

Я также пытался запустить этот код в среде tenorflow-gpu, и он не улучшился.

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...