Я работаю над выявлением оскорбительного и насильственного содержания. Когда я тренирую свою модель, журнал тренировок выглядит следующим образом:
Train on 9087 samples, validate on 2125 samples
Epoch 1/5
9087/9087 [==============================] - 33s 4ms/step - loss: 0.3193 - accuracy: 0.8603 - val_loss: 0.2314 - val_accuracy: 0.9322
Epoch 2/5
9087/9087 [==============================] - 33s 4ms/step - loss: 0.1787 - accuracy: 0.9440 - val_loss: 0.2039 - val_accuracy: 0.9356
Epoch 3/5
9087/9087 [==============================] - 32s 4ms/step - loss: 0.1148 - accuracy: 0.9637 - val_loss: 0.2569 - val_accuracy: 0.9180
Epoch 4/5
9087/9087 [==============================] - 33s 4ms/step - loss: 0.0805 - accuracy: 0.9738 - val_loss: 0.3409 - val_accuracy: 0.9047
Epoch 5/5
9087/9087 [==============================] - 36s 4ms/step - loss: 0.0599 - accuracy: 0.9795 - val_loss: 0.3661 - val_accuracy: 0.9082
Вы можете видеть на этом графике.
Как видите, потеря поезда и точность уменьшается, но потери при проверке и точность увеличиваются.
Код для модели:
model = Sequential()
model.add(Embedding(8941, 256,input_length=20))
model.add(LSTM(32, dropout=0.1, recurrent_dropout=0.1))
model.add(Dense(32,activation='relu'))
model.add(Dropout(0.4))
model.add(Dense(4, activation='sigmoid'))
model.summary()
model.compile(loss='binary_crossentropy',
optimizer=optimizers.Adam(lr=0.001),
metrics=['accuracy'])
history=model.fit(x, x_test,
batch_size=batch_size,
epochs=5,
verbose=1,
validation_data=(y, y_test))
Помощь будет оценена.