Если я правильно понимаю ваш предполагаемый результат, вы можете объединить среднесуточные значения с исходным кадром данных (после изменения имен столбцов).
# Sample data.
df = pd.DataFrame({
'Timestamp': pd.date_range('2019-01-01 00:00', '2019-01-01 10:00', freq='H'),
'Humidity': [57, 56, 55, 54, 55, 56, 57, 57, 57, 57, 55],
'Temp': [23, 23, 23, 22, 22, 22, 22, 22, 23, 23, 23],
'Speed': [2.222222222, 1.944444444, 1.944444444, 1.944444444, 1.944444444, 1.666666667, 1.666666667, 1.666666667, 1.944444444, 1.944444444, 2.222222222]
})
# Solution.
df_daily = (
df
.groupby(df['Timestamp'].dt.date)[['Humidity', 'Temp', 'Speed']]
.transform('mean')
.add_suffix(' (daily)')
.set_index(df['Timestamp'])
)
result = pd.concat([df.set_index('Timestamp').add_suffix(' (Hourly)'), df_daily], axis=1)
>>> result.shape
(11, 6)
>>> result
Humidity (Hourly) Temp (Hourly) Speed (Hourly) \
Timestamp
2019-01-01 00:00:00 57 23 2.222222
2019-01-01 01:00:00 56 23 1.944444
2019-01-01 02:00:00 55 23 1.944444
2019-01-01 03:00:00 54 22 1.944444
2019-01-01 04:00:00 55 22 1.944444
2019-01-01 05:00:00 56 22 1.666667
2019-01-01 06:00:00 57 22 1.666667
2019-01-01 07:00:00 57 22 1.666667
2019-01-01 08:00:00 57 23 1.944444
2019-01-01 09:00:00 57 23 1.944444
2019-01-01 10:00:00 55 23 2.222222
Humidity (daily) Temp (daily) Speed (daily)
Timestamp
2019-01-01 00:00:00 56 22.545455 1.919192
2019-01-01 01:00:00 56 22.545455 1.919192
2019-01-01 02:00:00 56 22.545455 1.919192
2019-01-01 03:00:00 56 22.545455 1.919192
2019-01-01 04:00:00 56 22.545455 1.919192
2019-01-01 05:00:00 56 22.545455 1.919192
2019-01-01 06:00:00 56 22.545455 1.919192
2019-01-01 07:00:00 56 22.545455 1.919192
2019-01-01 08:00:00 56 22.545455 1.919192
2019-01-01 09:00:00 56 22.545455 1.919192
2019-01-01 10:00:00 56 22.545455 1.919192