scala (искра) Zio конвертировать будущее в Zio - PullRequest
0 голосов
/ 28 апреля 2020

Моя цель состоит в том, чтобы запустить несколько моделей регрессионных мер искры мл (1000 раз) для одного набора данных, и я хочу сделать это, используя zio вместо будущего, потому что он работает слишком медленно. Ниже приведен рабочий пример использования Future. Отдельный список ключей используется для фильтрации многораздельного набора данных по ключу и запуска модели. Я настроил пул потоков с 8 исполнителями для управления им, но он быстро снижает производительность.

import scala.concurrent.{Await, ExecutionContext, ExecutionContextExecutorService, Future}
import java.util.concurrent.{Executors, TimeUnit}
import scala.concurrent.duration._
import org.apache.spark.sql.SaveMode

val pool = Executors.newFixedThreadPool(8)
implicit val xc: ExecutionContextExecutorService = ExecutionContext.fromExecutorService(pool)

case class Result(key: String, coeffs: String)

try {

    import spark.implicits._
    val tasks = {
    for (x <- keys)
        yield Future {
        Seq(
            Result(
            x.group,
            runModel(input.filter(col("group")===x)).mkString(",")
            )
        ).toDS()
            .write.mode(SaveMode.Overwrite).option("header", false).csv(
            s"hdfs://namenode:8020/results/$x.csv"
            )
        }
    }.toSeq
    Await.result(Future.sequence(tasks), Duration.Inf)
}
finally {
    pool.shutdown()
    pool.awaitTermination(Long.MaxValue, TimeUnit.NANOSECONDS)
}

Я пытался реализовать это в zio, но я не знаю, как реализовать очереди и установить лимит исполнителей, как в фьючерсах.

Ниже моя неудачная попытка до сих пор ...

import zio._
import zio.console._
import zio.stm._
import org.apache.spark.sql.{Dataset, SaveMode, SparkSession}
import org.apache.spark.sql.functions.col

//example data/signatures
case class ModelResult(key: String, coeffs: String)
case class Data(key: String, sales: Double)
val keys: Array[String] = Array("100_1", "100_2")
def runModel[T](ds: Dataset[T]): Vector[Double]

object MyApp1 extends App {

  val spark = SparkSession
    .builder()
    .getOrCreate()

  import spark.implicits._

  val input: Dataset[Data] = Seq(Data("100_1", 1d), Data("100_2", 2d)).toDS

  def run(args: List[String]): ZIO[ZEnv, Nothing, Int] = {

    for {
      queue <- Queue.bounded[Int](8)
      _ <- ZIO.foreach(1 to 8) (i => queue.offer(i)).fork
      _ <- ZIO.foreach(keys) { k => queue.take.flatMap(_ => readWrite(k, input, queue)) }
    } yield 0
  }

  def writecsv(k: String, v: String) = {

    Seq(ModelResult(k, v))
    .toDS
    .write
    .mode(SaveMode.Overwrite).option("header", value = false)
    .csv(s"hdfs://namenode:8020/results/$k.csv")
  }

  def readWrite[T](key: String, ds: Dataset[T], queue: Queue[Int]): ZIO[ZEnv, Nothing, Int] = {

    (for {
      result <- runModel(ds.filter(col("key")===key)).mkString(",")
      _ <- writecsv(key, result)
      _ <- queue.offer(1)
      _ <- putStrLn(s"successfully wrote output for $key")
    } yield 0)
  }
}

//to run
MyApp1.run(List[String]())

Каков наилучший способ решить эту проблему в zio?

1 Ответ

2 голосов
/ 28 апреля 2020

Чтобы распараллелить некоторую рабочую нагрузку, скажем, через 8 потоков, все, что вам нужно, это

ZIO.foreachParN(8)(1 to 100)(id => zio.blocking.blocking(Task{yourClusterJob(id)}))

Но не ожидайте значительного увеличения, переключившись с Futures на ZIO здесь:

1 ) Фактическая рабочая нагрузка преобладает над координацией, поэтому разница между ZIO и Future должна быть незначительной.

2) Возможно, вы вообще не получите никакого повышения, потому что 8 задач будут бороться за один и тот же пул ресурсов в искровое скопление.

...