Используя Google Colab, я пытался использовать Randomsearch от Kerastuner, чтобы найти лучший CNN для моего варианта использования.
На мой взгляд, все должно быть настроено правильно, но по некоторым причинам я всегда получаю
TypeError: ('Keyword argument not understood:', 'activation')
всякий раз, когда объявляется мой RandomSearch.
Функция объявления моей модели:
from tensorflow.keras import datasets, layers, models
def model_declaration(hp):
cnn = models.Sequential([
# Filtering & Pooling Layers
layers.Conv2D(
filters=hp.Int('filter1', min_value = 16, max_value = 128, step = 16), # Optimizing with filters from 16 to 128 in steps of 16
kernel_size = hp.Choice('kernel1', values=[3,6]), # Optimizing kernel size from 3 to 6
activation ='relu',
input_shape = (48,48,1) # always the same
),
layers.MaxPooling2D(pool_size=hp.Int('max_pooling_1', min_value = 2, max_value = 4, step = 16), activation = 'relu'),
layers.Conv2D(
filters=hp.Int('filter2', min_value = 16, max_value = 128, step = 16 ), # Optimizing with filters from 16 to 128 in steps of 16
kernel_size = hp.Choice('kernel2', values=[3,6]), # Optimizing kernel size from 3 to 6
activation = 'relu'),
layers.Conv2D(
filters=hp.Int('filter3', min_value = 8, max_value = 256, step = 16 ), # Optimizing with filters from 16 to 128 in steps of 16
kernel_size = hp.Choice('kernel3', values=[3,6]), # Optimizing kernel size from 3 to 6
activation = 'relu'
),
layers.Flatten(), # Flattening
])
for i in range(hp.Int('dense_layers', 2, 10)):
cnn.add(layers.Dense(units=hp.Int('dense_parameters'), min_value = 16, max_value = 128, step = 16), activation=hp.Choice(['relu', 'tanh', 'sigmoid']))
model.compile(optimizer=keras.optimizers.Adam(hp.Choice('learning_rate', values=[1e-1, 1e-2, 1e-3, 1e-4])),
loss = 'sparse_categorical_crossentropy',
metrics = ['accuracy'])
return model
И это мое объявление о моем произвольном поиске:
import kerastuner
from kerastuner import RandomSearch
from kerastuner.engine.hyperparameters import HyperParameter
random_search = RandomSearch(model_declaration, objective='val_accuracy', max_trials=5, directory='output', project_name='CNN best output')
Версия Tensorflow - 2.2.0-rc3 Kerastuner версия это 1.0.1 Keras версия 2.3.0-tf
Заранее спасибо за вашу помощь, я действительно борюсь с этим, так как я довольно плохо знаком с предметом.