Я работаю над реализацией состязательного обучения. Следующий код не работает:
for i, data in tqdm(enumerate(train_loader), total=len(train_loader), smoothing=0.9):
pc1, pc2 = data
pc1 = pc1.to(device).transpose(2, 1).contiguous().float()
pc2 = pc2.to(device).transpose(2, 1).contiguous().float()
# train the discriminator
net_gen.eval()
net_disc.train()
i_odds = torch.arange(start=1, end=pc1.shape[2], step=2)
...
# train the flow extractor
net_gen.train()
net_disc.eval()
flow_pred = net_gen(pc1, pc2)
pc_pred = pc1 + flow_pred
z_pred = net_disc(pc1[:, :, i_odds], pc_pred[:, :, i_odds])
loss_flow = - z_pred.mean()
opt_gen.zero_grad()
loss_flow.backward()
В последней строке я получаю следующую ошибку: Expected isFloatingType(grads[i].type().scalarType()) to be true, but got false.
Что это может быть? Для всего, что я мог проверить, модель и все тензоры имеют тип cuda.Float.
That is the traceback:
Traceback (most recent call last):
File "/home/zuanazzi/anaconda3/envs/tomtom2/lib/python3.6/pdb.py", line 1667, in main
pdb._runscript(mainpyfile)
File "/home/zuanazzi/anaconda3/envs/tomtom2/lib/python3.6/pdb.py", line 1548, in _runscript
self.run(statement)
File "/home/zuanazzi/anaconda3/envs/tomtom2/lib/python3.6/bdb.py", line 434, in run
exec(cmd, globals, locals)
File "<string>", line 1, in <module>
File "/home/zuanazzi/PointCloudFlow/flownet3d_pytorch/self_train_adversarial.py", line 452, in <module>
main()
File "/home/zuanazzi/PointCloudFlow/flownet3d_pytorch/self_train_adversarial.py", line 445, in main
train(args, net_flow, net_disc, train_loader, test_loader, boardio, textio)
File "/home/zuanazzi/PointCloudFlow/flownet3d_pytorch/self_train_adversarial.py", line 309, in train
train_stats = train_one_epoch(args, net_flow, net_disc, train_loader, opt_flow, opt_disc, writer, epoch)
File "/home/zuanazzi/PointCloudFlow/flownet3d_pytorch/self_train_adversarial.py", line 227, in train_one_epoch
loss_flow.backward()
File "/home/zuanazzi/anaconda3/envs/tomtom2/lib/python3.6/site-packages/torch/tensor.py", line 195, in backward
torch.autograd.backward(self, gradient, retain_graph, create_graph)
File "/home/zuanazzi/anaconda3/envs/tomtom2/lib/python3.6/site-packages/torch/autograd/__init__.py", line 99, in backward
allow_unreachable=True) # allow_unreachable flag
RuntimeError: Expected isFloatingType(grads[i].type().scalarType()) to be true, but got false. (Could this error message be improved? If so, please report an enhancement request to PyTorch.)
Вопрос, изначально заданный здесь: https://discuss.pytorch.org/t/expected-isfloatingtype-grads-i-type-scalartype-to-be-true-but-got-false/67840
Редактировать: Кажется, что архитектуры, основанные на слоях PointNet ++, не могут использоваться в качестве дискриминатора, потому что они не будут возвращать градиенты. В настоящее время это больше теория, чем утверждение.