LRU кеш дизайн - PullRequest
       39

LRU кеш дизайн

65 голосов
/ 24 марта 2010

Кэш наименьшего количества недавно использованных (LRU) - сначала отбрасывать наименее использованные элементы. Как вы разрабатываете и реализуете такой класс кеша? Требования к конструкции следующие:

1) найти предмет так быстро, как мы можем

2) Как только кеш пропадает и кеш заполнен, нам нужно как можно быстрее заменить наименее использованный элемент.

Как проанализировать и реализовать этот вопрос с точки зрения шаблона проектирования и алгоритма проектирования?

Ответы [ 9 ]

95 голосов
/ 24 марта 2010

Связанный список + хеш-таблица указателей на узлы связанного списка - это обычный способ реализации кэшей LRU. Это дает O (1) операций (при условии достойного хэша). Преимущество этого (будучи O (1)): вы можете сделать многопоточную версию, просто заблокировав всю структуру. Вам не нужно беспокоиться о гранулярной блокировке и т. Д.

Вкратце, как это работает:

При доступе к значению вы перемещаете соответствующий узел в связанном списке к заголовку.

Когда вам нужно удалить значение из кэша, вы удаляете его из хвостовой части.

Когда вы добавляете значение в кеш, вы просто помещаете его в начало связанного списка.

Благодаря doublep, вот сайт с реализацией C ++: Разные шаблоны контейнеров .

23 голосов
/ 24 января 2013

Это мой простой пример реализации C ++ для LRU-кэша, с комбинацией hash (unordered_map) и list. Элементы в списке имеют ключ для доступа к карте, а элементы на карте имеют итератор списка для доступа к списку.

#include <list>
#include <unordered_map>
#include <assert.h>

using namespace std;

template <class KEY_T, class VAL_T> class LRUCache{
private:
        list< pair<KEY_T,VAL_T> > item_list;
        unordered_map<KEY_T, decltype(item_list.begin()) > item_map;
        size_t cache_size;
private:
        void clean(void){
                while(item_map.size()>cache_size){
                        auto last_it = item_list.end(); last_it --;
                        item_map.erase(last_it->first);
                        item_list.pop_back();
                }
        };
public:
        LRUCache(int cache_size_):cache_size(cache_size_){
                ;
        };

        void put(const KEY_T &key, const VAL_T &val){
                auto it = item_map.find(key);
                if(it != item_map.end()){
                        item_list.erase(it->second);
                        item_map.erase(it);
                }
                item_list.push_front(make_pair(key,val));
                item_map.insert(make_pair(key, item_list.begin()));
                clean();
        };
        bool exist(const KEY_T &key){
                return (item_map.count(key)>0);
        };
        VAL_T get(const KEY_T &key){
                assert(exist(key));
                auto it = item_map.find(key);
                item_list.splice(item_list.begin(), item_list, it->second);
                return it->second->second;
        };

};
3 голосов
/ 02 августа 2014

Вот моя реализация для простого и простого LRU-кэша.

//LRU Cache
#include <cassert>
#include <list>

template <typename K,
          typename V
          >
class LRUCache
    {
    // Key access history, most recent at back
    typedef std::list<K> List;

    // Key to value and key history iterator
    typedef unordered_map< K,
                           std::pair<
                                     V,
                                     typename std::list<K>::iterator
                                    >
                         > Cache;

    typedef V (*Fn)(const K&);

public:
    LRUCache( size_t aCapacity, Fn aFn ) 
        : mFn( aFn )
        , mCapacity( aCapacity )
        {}

    //get value for key aKey
    V operator()( const K& aKey )
        {
        typename Cache::iterator it = mCache.find( aKey );
        if( it == mCache.end() ) //cache-miss: did not find the key
            {
            V v = mFn( aKey );
            insert( aKey, v );
            return v;
            }

        // cache-hit
        // Update access record by moving accessed key to back of the list
        mList.splice( mList.end(), mList, (it)->second.second );

        // return the retrieved value
        return (it)->second.first;
        }

private:
        // insert a new key-value pair in the cache
    void insert( const K& aKey, V aValue )
        {
        //method should be called only when cache-miss happens
        assert( mCache.find( aKey ) == mCache.end() );

        // make space if necessary
        if( mList.size() == mCapacity )
            {
            evict();
            }

        // record k as most-recently-used key
        typename std::list<K>::iterator it = mList.insert( mList.end(), aKey );

        // create key-value entry, linked to the usage record
        mCache.insert( std::make_pair( aKey, std::make_pair( aValue, it ) ) );
        }

        //Purge the least-recently used element in the cache
    void evict()
        {
        assert( !mList.empty() );

        // identify least-recently-used key
        const typename Cache::iterator it = mCache.find( mList.front() );

        //erase both elements to completely purge record
        mCache.erase( it );
        mList.pop_front();
        }

private:
    List mList;
    Cache mCache;
    Fn mFn;
    size_t mCapacity;
    };
2 голосов
/ 20 января 2019

Я вижу здесь несколько ненужных сложных реализаций, поэтому я решил также предоставить свою реализацию. Кеш имеет только два метода, get и set. Надеюсь, это лучше читается и понятно:

#include<unordered_map>
#include<list>

using namespace std;

template<typename K, typename V = K>
class LRUCache
{

private:
    list<K>items;
    unordered_map <K, pair<V, typename list<K>::iterator>> keyValuesMap;
    int csize;

public:
    LRUCache(int s) :csize(s) {
        if (csize < 1)
            csize = 10;
    }

    void set(const K key, const V value) {
        auto pos = keyValuesMap.find(key);
        if (pos == keyValuesMap.end()) {
            items.push_front(key);
            keyValuesMap[key] = { value, items.begin() };
            if (keyValuesMap.size() > csize) {
                keyValuesMap.erase(items.back());
                items.pop_back();
            }
        }
        else {
            items.erase(pos->second.second);
            items.push_front(key);
            keyValuesMap[key] = { value, items.begin() };
        }
    }

    bool get(const K key, V &value) {
        auto pos = keyValuesMap.find(key);
        if (pos == keyValuesMap.end())
            return false;
        items.erase(pos->second.second);
        items.push_front(key);
        keyValuesMap[key] = { pos->second.first, items.begin() };
        value = pos->second.first;
        return true;
    }
};
1 голос
/ 29 мая 2018

Два года назад я внедрил многопоточный кеш LRU.

LRU обычно реализуется с помощью HashMap и LinkedList. Вы можете гуглить детали реализации. Об этом много ресурсов (в Википедии тоже есть хорошее объяснение).

Чтобы быть потокобезопасным, вам нужно ставить блокировку всякий раз, когда вы меняете состояние LRU.

Я вставлю сюда свой код C ++ для вашей справки.

Вот реализация.

/***
    A template thread-safe LRU container.

    Typically LRU cache is implemented using a doubly linked list and a hash map.
    Doubly Linked List is used to store list of pages with most recently used page
    at the start of the list. So, as more pages are added to the list,
    least recently used pages are moved to the end of the list with page
    at tail being the least recently used page in the list.

    Additionally, this LRU provides time-to-live feature. Each entry has an expiration
    datetime.
***/
#ifndef LRU_CACHE_H
#define LRU_CACHE_H

#include <iostream>
#include <list>

#include <boost/unordered_map.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/make_shared.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>
#include <boost/thread/mutex.hpp>

template <typename KeyType, typename ValueType>
  class LRUCache {
 private:
  typedef boost::posix_time::ptime DateTime;

  // Cache-entry
  struct ListItem {
  ListItem(const KeyType &key,
           const ValueType &value,
           const DateTime &expiration_datetime)
  : m_key(key), m_value(value), m_expiration_datetime(expiration_datetime){}
    KeyType m_key;
    ValueType m_value;
    DateTime m_expiration_datetime;
  };

  typedef boost::shared_ptr<ListItem> ListItemPtr;
  typedef std::list<ListItemPtr> LruList;
  typedef typename std::list<ListItemPtr>::iterator LruListPos;
  typedef boost::unordered_map<KeyType, LruListPos> LruMapper;

  // A mutext to ensuare thread-safety.
  boost::mutex m_cache_mutex;

  // Maximum number of entries.
  std::size_t m_capacity;

  // Stores cache-entries from latest to oldest.
  LruList m_list;

  // Mapper for key to list-position.
  LruMapper m_mapper;

  // Default time-to-live being add to entry every time we touch it.
  unsigned long m_ttl_in_seconds;

  /***
      Note : This is a helper function whose function call need to be wrapped
      within a lock. It returns true/false whether key exists and
      not expires. Delete the expired entry if necessary.
  ***/
  bool containsKeyHelper(const KeyType &key) {
    bool has_key(m_mapper.count(key) != 0);
    if (has_key) {
      LruListPos pos = m_mapper[key];
      ListItemPtr & cur_item_ptr = *pos;

      // Remove the entry if key expires
      if (isDateTimeExpired(cur_item_ptr->m_expiration_datetime)) {
        has_key = false;
        m_list.erase(pos);
        m_mapper.erase(key);
      }
    }
    return has_key;
  }

  /***
      Locate an item in list by key, and move it at the front of the list,
      which means make it the latest item.
      Note : This is a helper function whose function call need to be wrapped
      within a lock.
  ***/
  void makeEntryTheLatest(const KeyType &key) {
    if (m_mapper.count(key)) {
      // Add original item at the front of the list,
      // and update <Key, ListPosition> mapper.
      LruListPos original_list_position = m_mapper[key];
      const ListItemPtr & cur_item_ptr = *original_list_position;
      m_list.push_front(cur_item_ptr);
      m_mapper[key] = m_list.begin();

      // Don't forget to update its expiration datetime.
      m_list.front()->m_expiration_datetime = getExpirationDatetime(m_list.front()->m_expiration_datetime);

      // Erase the item at original position.
      m_list.erase(original_list_position);
    }
  }

 public:

  /***
      Cache should have capacity to limit its memory usage.
      We also add time-to-live for each cache entry to expire
      the stale information. By default, ttl is one hour.
  ***/
 LRUCache(std::size_t capacity, unsigned long ttl_in_seconds = 3600)
   : m_capacity(capacity), m_ttl_in_seconds(ttl_in_seconds) {}

  /***
      Return now + time-to-live
  ***/
  DateTime getExpirationDatetime(const DateTime &now) {
    static const boost::posix_time::seconds ttl(m_ttl_in_seconds);
    return now + ttl;
  }

  /***
      If input datetime is older than current datetime,
      then it is expired.
  ***/
  bool isDateTimeExpired(const DateTime &date_time) {
    return date_time < boost::posix_time::second_clock::local_time();
  }

  /***
      Return the number of entries in this cache.
   ***/
  std::size_t size() {
    boost::mutex::scoped_lock lock(m_cache_mutex);
    return m_mapper.size();
  }

  /***
      Get value by key.
      Return true/false whether key exists.
      If key exists, input paramter value will get updated.
  ***/
  bool get(const KeyType &key, ValueType &value) {
    boost::mutex::scoped_lock lock(m_cache_mutex);
    if (!containsKeyHelper(key)) {
      return false;
    } else {
      // Make the entry the latest and update its TTL.
      makeEntryTheLatest(key);

      // Then get its value.
      value = m_list.front()->m_value;
      return true;
    }
  }

  /***
      Add <key, value> pair if no such key exists.
      Otherwise, just update the value of old key.
  ***/
  void put(const KeyType &key, const ValueType &value) {
    boost::mutex::scoped_lock lock(m_cache_mutex);
    if (containsKeyHelper(key)) {
      // Make the entry the latest and update its TTL.
      makeEntryTheLatest(key);

      // Now we only need to update its value.
      m_list.front()->m_value = value;
    } else { // Key exists and is not expired.
      if (m_list.size() == m_capacity) {
        KeyType delete_key = m_list.back()->m_key;
        m_list.pop_back();
        m_mapper.erase(delete_key);
      }

      DateTime now = boost::posix_time::second_clock::local_time();
      m_list.push_front(boost::make_shared<ListItem>(key, value,
                                                     getExpirationDatetime(now)));
      m_mapper[key] = m_list.begin();
    }
  }
};
#endif

Вот модульные тесты.

#include "cxx_unit.h"
#include "lru_cache.h"

struct LruCacheTest
  : public FDS::CxxUnit::TestFixture<LruCacheTest>{
  CXXUNIT_TEST_SUITE();
  CXXUNIT_TEST(LruCacheTest, testContainsKey);
  CXXUNIT_TEST(LruCacheTest, testGet);
  CXXUNIT_TEST(LruCacheTest, testPut);
  CXXUNIT_TEST_SUITE_END();

  void testContainsKey();
  void testGet();
  void testPut();
};


void LruCacheTest::testContainsKey() {
  LRUCache<int,std::string> cache(3);
  cache.put(1,"1"); // 1
  cache.put(2,"2"); // 2,1
  cache.put(3,"3"); // 3,2,1
  cache.put(4,"4"); // 4,3,2

  std::string value_holder("");
  CXXUNIT_ASSERT(cache.get(1, value_holder) == false); // 4,3,2
  CXXUNIT_ASSERT(value_holder == "");

  CXXUNIT_ASSERT(cache.get(2, value_holder) == true); // 2,4,3
  CXXUNIT_ASSERT(value_holder == "2");

  cache.put(5,"5"); // 5, 2, 4

  CXXUNIT_ASSERT(cache.get(3, value_holder) == false); // 5, 2, 4
  CXXUNIT_ASSERT(value_holder == "2"); // value_holder is still "2"

  CXXUNIT_ASSERT(cache.get(4, value_holder) == true); // 4, 5, 2
  CXXUNIT_ASSERT(value_holder == "4");

  cache.put(2,"II"); // {2, "II"}, 4, 5

  CXXUNIT_ASSERT(cache.get(2, value_holder) == true); // 2, 4, 5
  CXXUNIT_ASSERT(value_holder == "II");

  // Cache-entries : {2, "II"}, {4, "4"}, {5, "5"}
  CXXUNIT_ASSERT(cache.size() == 3);
  CXXUNIT_ASSERT(cache.get(2, value_holder) == true);
  CXXUNIT_ASSERT(cache.get(4, value_holder) == true);
  CXXUNIT_ASSERT(cache.get(5, value_holder) == true);
}

void LruCacheTest::testGet() {
  LRUCache<int,std::string> cache(3);
  cache.put(1,"1"); // 1
  cache.put(2,"2"); // 2,1
  cache.put(3,"3"); // 3,2,1
  cache.put(4,"4"); // 4,3,2

  std::string value_holder("");
  CXXUNIT_ASSERT(cache.get(1, value_holder) == false); // 4,3,2
  CXXUNIT_ASSERT(value_holder == "");

  CXXUNIT_ASSERT(cache.get(2, value_holder) == true); // 2,4,3
  CXXUNIT_ASSERT(value_holder == "2");

  cache.put(5,"5"); // 5,2,4
  CXXUNIT_ASSERT(cache.get(5, value_holder) == true); // 5,2,4
  CXXUNIT_ASSERT(value_holder == "5");

  CXXUNIT_ASSERT(cache.get(4, value_holder) == true); // 4, 5, 2
  CXXUNIT_ASSERT(value_holder == "4");


  cache.put(2,"II");
  CXXUNIT_ASSERT(cache.get(2, value_holder) == true); // {2 : "II"}, 4, 5
  CXXUNIT_ASSERT(value_holder == "II");

  // Cache-entries : {2, "II"}, {4, "4"}, {5, "5"}
  CXXUNIT_ASSERT(cache.size() == 3);
  CXXUNIT_ASSERT(cache.get(2, value_holder) == true);
  CXXUNIT_ASSERT(cache.get(4, value_holder) == true);
  CXXUNIT_ASSERT(cache.get(5, value_holder) == true);
}

void LruCacheTest::testPut() {
  LRUCache<int,std::string> cache(3);
  cache.put(1,"1"); // 1
  cache.put(2,"2"); // 2,1
  cache.put(3,"3"); // 3,2,1
  cache.put(4,"4"); // 4,3,2
  cache.put(5,"5"); // 5,4,3

  std::string value_holder("");
  CXXUNIT_ASSERT(cache.get(2, value_holder) == false); // 5,4,3
  CXXUNIT_ASSERT(value_holder == "");

  CXXUNIT_ASSERT(cache.get(4, value_holder) == true); // 4,5,3
  CXXUNIT_ASSERT(value_holder == "4");

  cache.put(2,"II");
  CXXUNIT_ASSERT(cache.get(2, value_holder) == true); // II,4,5
  CXXUNIT_ASSERT(value_holder == "II");

  // Cache-entries : {2, "II"}, {4, "4"}, {5, "5"}
  CXXUNIT_ASSERT(cache.size() == 3);
  CXXUNIT_ASSERT(cache.get(2, value_holder) == true);
  CXXUNIT_ASSERT(cache.get(4, value_holder) == true);
  CXXUNIT_ASSERT(cache.get(5, value_holder) == true);
}

CXXUNIT_REGISTER_TEST(LruCacheTest);
1 голос
/ 06 июня 2014

У меня есть реализация LRU здесь . Интерфейс соответствует std :: map, поэтому его не должно быть так сложно использовать. Кроме того, вы можете предоставить специальный обработчик резервного копирования, который используется, если данные в кэше являются недействительными.

sweet::Cache<std::string,std::vector<int>, 48> c1;
c1.insert("key1", std::vector<int>());
c1.insert("key2", std::vector<int>());
assert(c1.contains("key1"));
0 голосов
/ 04 мая 2019

Это мой простой Java-программист со сложностью O (1).

//

package com.chase.digital.mystack;

import java.util.HashMap;
import java.util.Map;

public class LRUCache {

  private int size;
  private Map<String, Map<String, Integer>> cache = new HashMap<>();

  public LRUCache(int size) {
    this.size = size;
  }

  public void addToCache(String key, String value) {
    if (cache.size() < size) {
      Map<String, Integer> valueMap = new HashMap<>();
      valueMap.put(value, 0);
      cache.put(key, valueMap);
    } else {
      findLRUAndAdd(key, value);
    }
  }


  public String getFromCache(String key) {
    String returnValue = null;
    if (cache.get(key) == null) {
      return null;
    } else {
      Map<String, Integer> value = cache.get(key);
      for (String s : value.keySet()) {
        value.put(s, value.get(s) + 1);
        returnValue = s;
      }
    }
    return returnValue;
  }

  private void findLRUAndAdd(String key, String value) {
    String leastRecentUsedKey = null;
    int lastUsedValue = 500000;
    for (String s : cache.keySet()) {
      final Map<String, Integer> stringIntegerMap = cache.get(s);
      for (String s1 : stringIntegerMap.keySet()) {
        final Integer integer = stringIntegerMap.get(s1);
        if (integer < lastUsedValue) {
          lastUsedValue = integer;
          leastRecentUsedKey = s;
        }
      }
    }
    cache.remove(leastRecentUsedKey);
    Map<String, Integer> valueMap = new HashMap<>();
    valueMap.put(value, 0);
    cache.put(key, valueMap);
  }


}
0 голосов
/ 07 ноября 2017

Техника замены страницы LRU:

При ссылке на страницу требуемая страница может находиться в кэше.

If in the cache: нам нужно перенести его в начало очереди кеша.

If NOT in the cache: мы вносим это в кеш. Проще говоря, мы добавляем новую страницу в начало очереди кеша. Если кэш заполнен, то есть все кадры заполнены, мы удаляем страницу из задней части очереди кэша и добавляем новую страницу в начало очереди кэша.

# Cache Size
csize = int(input())

# Sequence of pages 
pages = list(map(int,input().split()))

# Take a cache list
cache=[]

# Keep track of number of elements in cache
n=0

# Count Page Fault
fault=0

for page in pages:
    # If page exists in cache
    if page in cache:
        # Move the page to front as it is most recent page
        # First remove from cache and then append at front
        cache.remove(page)
        cache.append(page)
    else:
        # Cache is full
        if(n==csize):
            # Remove the least recent page 
            cache.pop(0)
        else:
            # Increment element count in cache
            n=n+1

        # Page not exist in cache => Page Fault
        fault += 1
        cache.append(page)

print("Page Fault:",fault)

Вход / выход

Input:
3
1 2 3 4 1 2 5 1 2 3 4 5

Output:
Page Fault: 10
0 голосов
/ 06 ноября 2010

Является ли кеш структурой данных, которая поддерживает извлечение значения по ключу, как хеш-таблица? LRU означает, что кэш имеет определенные ограничения по размеру, что нам необходимо периодически удалять наименее используемые записи.

Если вы реализуете с помощью связанного списка + хеш-таблицы указателей, как вы можете O (1) получить значение по ключу?

Я бы реализовал кэш LRU с хеш-таблицей, в которой значение каждой записи равно значению + указатели на предыдущую / следующую запись.

Что касается многопоточного доступа, я бы предпочел, чтобы блокировка чтения-записи (в идеале реализованная с помощью спин-блокировки, поскольку конкуренция обычно быстрая) отслеживалась.

...