У нас есть следующая проблема при обучении модели DL для прогнозирования оценки кредита (классификация на 0,1 или 3).
Это шаги:
step1: Создать новый столбец «скоринг» (вывод)
conditions = [
(df2['Credit Score'] >= 0) & (df2['Credit Score'] < 1000),
(df2['Credit Score'] >= 1000) & (df2['Credit Score'] < 6000),
(df2['Credit Score'] >= 6000) & (df2['Credit Score'] <= 7000)]
choices = [0,1,2]
df2['Scoring'] = np.select(conditions, choices)
шаг 2: подготовка обучения
array = df2.values
X = np.vstack((array[:,2:3].T, array[:,5:15].T)).T
Y = array[:,15:]
N = Y.shape[0]
T = np.zeros((N, np.max(Y)+1))
for i in range(N):
T[i,Y[i]] = 1
x_train, x_test, y_train, y_test = train_test_split(X, T, test_size=0.2, random_state=42)
шаг 3: топология
model = Sequential()
model.add(Dense(80, input_shape=(11,), activation='tanh'))
model.add(Dropout(0.2))
model.add(Dense(80, activation='tanh'))
model.add(Dropout(0.1))
model.add(Dense(40, activation='relu'))
model.add(Dense(3, activation='softmax'))
epochs =200
learning_rate = 0.00001
decay_rate = learning_rate / epochs
momentum = 0.002
sgd = SGD(lr=learning_rate, momentum=momentum, decay=decay_rate, nesterov=False)
ad = Adamax(lr=learning_rate)
шаг 4: обучение
epochs = 200
batch_size = 16
history = model.fit(x_train, y_train, validation_data=(x_test, y_test), nb_epoch=epochs,
batch_size=batch_size,validation_split=0.1)
print ('fit done!')
метрики
365/365 [============================ =======] - 0 с 60 мкс / образец - потеря: 0,0963 - cc: 0,9808 Тестовый набор Потеря: 0,096 Точность: 0,981
точность
step5: прогноз
text1 = [1358,1555,1,3,1741,8,0,1596,1518,0,0] #scoring 0
text2 = [1454,1601,3,11,1763,10,0,685,1044,0,0] #scoring 1
text3 = [1209,1437,3,11,199,18,1,761,1333,1,0] #scoring 2
tmp = np.vstack(text1).T
textA = tmp.reshape(1,-1)
tmp = np.vstack(text2).T
textB = tmp.reshape(1,-1)
tmp = np.vstack(text3).T
print(tmp)
textC = tmp.reshape(1,-1)
p = model.predict(textA)
t = p[0]
print(textA,np.argmax(t))
p = model.predict(textB)
t = p[0]
print(textB,np.argmax(t))
p = model.predict(textC)
t = p[0]
print(textC,np.argmax(t))
Проблема: выход всегда одинаков в прогнозе !!!
[9.9205679e-01 3.8634153e- 04 7.5568780e-03] [[1358 1555 1 3 1741 8 0 1596 1518 0 0]] 0 --- оценка 0
[0,9862417 0,00205712 0,01170125] [[1454 1601 3 11 1763 10 0 685 1044 0 0]] 0 --- оценка 0
[9.9251783e-01 2.5733517e-04 7.2247880e-03] [[1209 1437 3 11 199 18 1 761 1333 1 0]] 0 ---- оценка 0
¿в чем может быть причина такого поведения?
Заранее спасибо!