In [83]: alist = [
...: ['name', 'property', 'value t0', 'value t1', 'value t2'],
...: ['a', 0.5, 1, 2, 3],
...: ['b', 0.2, 5, 10, 100],
...: ['c', 0.7, 3, 6, 9],
...: ]
In [84]: alist
Out[84]:
[['name', 'property', 'value t0', 'value t1', 'value t2'],
['a', 0.5, 1, 2, 3],
['b', 0.2, 5, 10, 100],
['c', 0.7, 3, 6, 9]]
In [85]: np.array(alist)
Out[85]:
array([['name', 'property', 'value t0', 'value t1', 'value t2'],
['a', '0.5', '1', '2', '3'],
['b', '0.2', '5', '10', '100'],
['c', '0.7', '3', '6', '9']], dtype='<U8')
массив объектов:
In [87]: np.array(alist, dtype=object)
Out[87]:
array([['name', 'property', 'value t0', 'value t1', 'value t2'],
['a', 0.5, 1, 2, 3],
['b', 0.2, 5, 10, 100],
['c', 0.7, 3, 6, 9]], dtype=object)
структурированный массив:
In [88]: np.array([tuple(row) for row in alist[1:]], dtype='U1,f,i,i,i')
Out[88]:
array([('a', 0.5, 1, 2, 3), ('b', 0.2, 5, 10, 100),
('c', 0.7, 3, 6, 9)],
dtype=[('f0', '<U1'), ('f1', '<f4'), ('f2', '<i4'), ('f3', '<i4'), ('f4', '<i4')])
pandas:
In [90]: import pandas as pd
In [91]: pd.DataFrame(alist[1:], columns=alist[0])
Out[91]:
name property value t0 value t1 value t2
0 a 0.5 1 2 3
1 b 0.2 5 10 100
2 c 0.7 3 6 9