В моем сценарии обнаружения я получаю следующую ошибку:
Ошибка преобразования фигуры в аргумент TensorShape: int () должна быть строкой или числом, а не «кортежем».
Версия Tensorflow: 2.0
Код:
"""Yolo v3 detection script.
Saves the detections in the `detection` folder.
Usage:
python detect.py <images/video> <iou threshold> <confidence threshold> <filenames>
Example:
python detect.py images 0.5 0.5 data/images/dog.jpg data/images/office.jpg
python detect.py video 0.5 0.5 data/video/shinjuku.mp4
Note that only one video can be processed at one run.
"""
import tensorflow as tf
import sys
import cv2
from yolo_v3 import Yolo_v3
from utils import load_images, load_class_names, draw_boxes, draw_frame
_MODEL_SIZE = (416, 416)
_CLASS_NAMES_FILE = './data/labels/coco.names'
_MAX_OUTPUT_SIZE = 20
def main(type, iou_threshold, confidence_threshold, input_names):
class_names = load_class_names(_CLASS_NAMES_FILE)
n_classes = len(class_names)
model = Yolo_v3(n_classes=n_classes, model_size=_MODEL_SIZE,
max_output_size=_MAX_OUTPUT_SIZE,
iou_threshold=iou_threshold,
confidence_threshold=confidence_threshold)
if type == 'images':
batch_size = len(input_names)
batch = load_images(input_names, model_size=_MODEL_SIZE)
inputs = tf.placeholder(tf.float32, [batch_size, _MODEL_SIZE, 3])
detections = model(inputs, training=False)
saver = tf.train.Saver(tf.global_variables(scope='yolo_v3_model'))
with tf.Session() as sess:
saver.restore(sess, './weights/model.ckpt')
detection_result = sess.run(detections, feed_dict={inputs: batch})
draw_boxes(input_names, detection_result, class_names, _MODEL_SIZE)
print('Detections have been saved successfully.')
elif type == 'video':
inputs = tf.placeholder(tf.float32, [1, _MODEL_SIZE, 3])
detections = model(inputs, training=False)
saver = tf.train.Saver(tf.global_variables(scope='yolo_v3_model'))
with tf.Session() as sess:
saver.restore(sess, './weights/model.ckpt')
win_name = 'Video detection'
cv2.namedWindow(win_name)
cap = cv2.VideoCapture(input_names[0])
frame_size = (cap.get(cv2.CAP_PROP_FRAME_WIDTH),
cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fourcc = cv2.VideoWriter_fourcc(*'X264')
fps = cap.get(cv2.CAP_PROP_FPS)
out = cv2.VideoWriter('./detections/detections.mp4', fourcc, fps,
(int(frame_size[0]), int(frame_size[1])))
try:
while True:
ret, frame = cap.read()
if not ret:
break
resized_frame = cv2.resize(frame, dsize=_MODEL_SIZE[::-1],
interpolation=cv2.INTER_NEAREST)
detection_result = sess.run(detections,
feed_dict={inputs: [resized_frame]})
draw_frame(frame, frame_size, detection_result,
class_names, _MODEL_SIZE)
cv2.imshow(win_name, frame)
key = cv2.waitKey(1) & 0xFF
if key == ord('q'):
break
out.write(frame)
finally:
cv2.destroyAllWindows()
cap.release()
print('Detections have been saved successfully.')
else:
raise ValueError("Inappropriate data type. Please choose either 'video' or 'images'.")
if __name__ == '__main__':
main(sys.argv[1], float(sys.argv[2]), float(sys.argv[3]), sys.argv[4:])
Проблема со строкой:
main(sys.argv[1], float(sys.argv[2]), float(sys.argv[3]), sys.argv[4:])
Журнал ошибок:
Traceback (most recent call last): File "detect.py", line 100, in <module>
main(sys.argv[1], float(sys.argv[2]), float(sys.argv[3]), sys.argv[4:]) File "detect.py", line 39, in main
inputs = tf.placeholder(tf.float32, [batch_size, _MODEL_SIZE, 3]) File
"/home/christie/.local/lib/python2.7/site-packages/tensorflow/python/ops/array_ops.py",
line 2143, in placeholder
return gen_array_ops.placeholder(dtype=dtype, shape=shape, name=name) File
"/home/christie/.local/lib/python2.7/site-packages/tensorflow/python/ops/gen_array_ops.py",
line 6260, in placeholder
shape = _execute.make_shape(shape, "shape") File "/home/christie/.local/lib/python2.7/site-packages/tensorflow/python/eager/execute.py",
line 148, in make_shape
raise TypeError("Error converting %s to a TensorShape: %s." % (arg_name, e)) TypeError: Error converting shape to a TensorShape:
int() argument must be a string or a number, not 'tuple'.