Эта проблема является небольшой модификацией блога, которым вы поделились.
Теги задачи: - Алгоритм MO, деревья, LCA, бинарный подъем, сито, предварительное вычисление, простые множители
Предварительные вычисления: - Просто нам нужно сделать некоторые предварительные вычисления с seiveOfErothenesis , чтобы сохранить наивысший простой множитель каждого элемента, возможный во входных ограничениях. Затем, используя это, мы будем хранить все основные факторы и их мощности для каждого элемента во входном массиве в другой матрице.
Наблюдение: - с ограничениями, которые вы видите, их может быть очень мало такие простые числа возможны для каждого элемента. Для элемента (10 ^ 6) может быть максимально 7 простых факторов.
Изменить MO Al go В блоге: - Теперь в нашем методе вычислений нам просто нужно сохранить карту, в которой будет храниться текущий счетчик основного множителя. При добавлении или вычитании каждого элемента при решении запросов мы будем перебирать основные факторы этого элемента и делить наш результат (сохраняя общее число факторов) на старое число этого простого числа, а затем обновлять счет этого простого и кратного нашего результата с новым счетом. (Это будет O (7) max для каждого сложения / вычитания).
Сложность: - O (T * (( N + Q) * sqrt (N) * F)) где F - 7 в нашем случае. F - сложность вашего метода проверки ().
- T - количество тестовых примеров во входном файле.
- N - размер входного массива.
- Q - количество запросов.
Ниже приведена реализация вышеуказанного подхода в JAVA. computePrimePowers () и check () - это те методы, которые вам интересны.
import java.util.*;
import java.io.*;
public class Main {
static int BLOCK_SIZE;
static int ar[];
static ArrayList<Integer> graph[];
static StringBuffer sb = new StringBuffer();
static boolean notPrime[] = new boolean[1000001];
static int hpf[] = new int[1000001];
static void seive(){
notPrime[0] = true;
notPrime[1] = true;
for(int i = 2; i < 1000001; i++){
if(!notPrime[i]){
hpf[i] = i;
for(int j = 2 * i; j < 1000001; j += i){
notPrime[j] = true;
hpf[j] = i;
}
}
}
}
static long modI[] = new long[1000001];
static void computeModI() {
for(int i = 1; i < 1000001; i++) {
modI[i] = pow(i, 1000000005);
}
}
static long pow(long x, long y) {
if (y == 0)
return 1;
long p = pow(x, y / 2);
p = (p >= 1000000007) ? p % 1000000007 : p;
p = p * p;
p = (p >= 1000000007) ? p % 1000000007 : p;
if ((y & 1) == 0)
return p;
else {
long tt = x * p;
return (tt >= 1000000007) ? tt % 1000000007 : tt;
}
}
public static void main(String[] args) throws Exception {
Reader s = new Reader();
int test = s.nextInt();
seive();
computeModI();
for(int ii = 0; ii < test; ii++){
int n = s.nextInt();
lcaTable = new int[19][n + 1];
graph = new ArrayList[n + 1];
arrPrimes = new int[n + 1][7][2];
primeCnt = new int[1000001];
visited = new int[n + 1];
ar = new int[n + 1];
for(int i = 0; i < graph.length; i++) graph[i] = new ArrayList<>();
for(int i = 1; i < n; i++){
int u = s.nextInt(), v = s.nextInt();
graph[u].add(v);
graph[v].add(u);
}
int ip = 1; while(ip <= n) ar[ip++] = s.nextInt();
computePrimePowers();
int q = s.nextInt();
LVL = new int[n + 1];
dfsTime = 0;
dfs(1, -1);
BLOCK_SIZE = (int) Math.sqrt(dfsTime);
int Q[][] = new int[q][4];
int i = 0;
while(q-- > 0) {
int u = s.nextInt(), v = s.nextInt();
Q[i][0] = lca(u, v);
if (l[u] > l[v]) {
int temp = u; u = v; v = temp;
}
if (Q[i][0] == u) {
Q[i][1] = l[u];
Q[i][2] = l[v];
}
else {
Q[i][1] = r[u]; // left at col1 in query
Q[i][2] = l[v]; // right at col2
}
Q[i][3] = i;
i++;
}
Arrays.sort(Q, new Comparator<int[]>() {
@Override
public int compare(int[] x, int[] y) {
int block_x = (x[1] - 1) / (BLOCK_SIZE + 1);
int block_y = (y[1] - 1) / (BLOCK_SIZE + 1);
if(block_x != block_y)
return block_x - block_y;
return x[2] - y[2];
}
});
solveQueries(Q);
}
System.out.println(sb);
}
static long res;
private static void solveQueries(int [][] Q) {
int M = Q.length;
long results[] = new long[M];
res = 1;
int curL = Q[0][1], curR = Q[0][1] - 1;
int i = 0;
while(i < M){
while (curL < Q[i][1]) check(ID[curL++]);
while (curL > Q[i][1]) check(ID[--curL]);
while (curR < Q[i][2]) check(ID[++curR]);
while (curR > Q[i][2]) check(ID[curR--]);
int u = ID[curL], v = ID[curR];
if (Q[i][0] != u && Q[i][0] != v) check(Q[i][0]);
results[Q[i][3]] = res;
if (Q[i][0] != u && Q[i][0] != v) check(Q[i][0]);
i++;
}
i = 0;
while(i < M) sb.append(results[i++] + "\n");
}
static int visited[];
static int primeCnt[];
private static void check(int x) {
if(visited[x] == 1){
for(int i = 0; i < 7; i++) {
int c = arrPrimes[x][i][1];
int pp = arrPrimes[x][i][0];
if(pp == 0) break;
long tem = res * modI[primeCnt[pp] + 1];
res = (tem >= 1000000007) ? tem % 1000000007 : tem;
primeCnt[pp] -= c;
tem = res * (primeCnt[pp] + 1);
res = (tem >= 1000000007) ? tem % 1000000007 : tem;
}
}
else if(visited[x] == 0){
for(int i = 0; i < 7; i++) {
int c = arrPrimes[x][i][1];
int pp = arrPrimes[x][i][0];
if(pp == 0) break;
long tem = res * modI[primeCnt[pp] + 1];
res = (tem >= 1000000007) ? tem % 1000000007 : tem;
primeCnt[pp] += c;
tem = res * (primeCnt[pp] + 1);
res = (tem >= 1000000007) ? tem % 1000000007 : tem;
}
}
visited[x] ^= 1;
}
static int arrPrimes[][][];
static void computePrimePowers() {
int n = arrPrimes.length;
int i = 0;
while(i < n) {
int ele = ar[i];
int k = 0;
while(ele > 1) {
int c = 0;
int pp = hpf[ele];
while(hpf[ele] == pp) {
c++; ele /= pp;
}
arrPrimes[i][k][0] = pp;
arrPrimes[i][k][1] = c;
k++;
}
i++;
}
}
static int dfsTime;
static int l[] = new int[1000001], r[] = new int[1000001], ID[] = new int[1000001], LVL[], lcaTable[][];
static void dfs(int u, int p){
l[u] = ++dfsTime;
ID[dfsTime] = u;
int i = 1;
while(i < 19) {
lcaTable[i][u] = lcaTable[i - 1][lcaTable[i - 1][u]];
i++;
}
i = 0;
while(i < graph[u].size()){
int v = graph[u].get(i);
i++;
if (v == p) continue;
LVL[v] = LVL[u] + 1;
lcaTable[0][v] = u;
dfs(v, u);
}
r[u] = ++dfsTime;
ID[dfsTime] = u;
}
static int lca(int u, int v){
if (LVL[u] > LVL[v]) {
int temp = u;
u = v; v = temp;
}
int i = 18;
while(i >= 0) {
if (LVL[v] - (1 << i) >= LVL[u]) v = lcaTable[i][v];
i--;
}
if (u == v) return u;
i = 18;
while(i >= 0){
if (lcaTable[i][u] != lcaTable[i][v]){
u = lcaTable[i][u];
v = lcaTable[i][v];
}
i--;
}
return lcaTable[0][u];
}
}