Это должно сделать это:
import pandas as pd
# create dummy data
df = pd.DataFrame(
columns = ['ID', 'Trans_Date', 'Trans_Time', 'Amount'],
data = [
[1, '03/23/2019', '06:51:03', 100],
[1, '03/24/2019', '12:32:48', 600],
[1, '03/24/2019', '14:15:35', 250],
[1, '06/05/2019', '16:18:21', 75],
[2, '02/01/2019', '18:02:52', 200],
[2, '02/02/2019', '10:03:02', 150],
[2, '02/03/2019', '23:47:51', 800],
[3, '01/18/2019', '11:12:58', 1000],
[3, '01/23/2019', '22:12:41', 15]
]
)
df_out = pd.DataFrame(
columns = ['ID', 'Trans_Date', 'Trans_Time', 'Amount', '2d_Running_Total'],
data = [
[1, '03/23/2019', '06:51:03', 100, 100],
[1, '03/24/2019', '12:32:48', 600, 700],
[1, '03/24/2019', '14:15:35', 250, 950],
[1, '06/05/2019', '16:18:21', 75, 75],
[2, '02/01/2019', '18:02:52', 200, 200],
[2, '02/02/2019', '10:03:02', 150, 350],
[2, '02/03/2019', '23:47:51', 800, 950],
[3, '01/18/2019', '11:12:58', 1000, 1000]
]
)
# convert into datetime object and set as index
df['Trans_DateTime'] = pd.to_datetime(df['Trans_Date'] + ' ' + df['Trans_Time'])
df = df.set_index('Trans_DateTime')
# group by ID and apply rolling window to the amount column
df['2d_Running_Total'] = df.groupby('ID')['Amount'].rolling('2d').sum().values.astype(int)
df.reset_index(drop=True)