Я использовал керасы и тензорфоу, и я совершенно новичок в этом. Я обучил свои модели, и когда я делаю, чтобы предсказать это, ошибка показывает. Это код, который я использовал для предсказания изображения
import numpy as np
from flask import Flask, request, jsonify, render_template
import numpy
from PIL import Image
import os
import tensorflow.keras
from werkzeug.utils import secure_filename
from keras.models import load_model
app = Flask(__name__)
model = load_model('traffic_classifier.h5')
model._make_predict_function()
@app.route('/')
def index():
# Main page
return render_template('index.html')
@app.route('/traffic')
def traffic():
# Main page
return render_template('traffic.html')
@app.route('/sleep')
def sleep():
# Main page
return render_template('sleep.html')
@app.route('/predict',methods=['POST'])
def predict():
'''
For rendering results on HTML GUI
'''
classes = { 1:'Speed limit (20km/h)',
2:'Speed limit (30km/h)',
3:'Speed limit (50km/h)',
4:'Speed limit (60km/h)',
5:'Speed limit (70km/h)',
6:'Speed limit (80km/h)',
7:'End of speed limit (80km/h)',
8:'Speed limit (100km/h)',
9:'Speed limit (120km/h)',
10:'No passing',
11:'No passing veh over 3.5 tons',
12:'Right-of-way at intersection',
13:'Priority road',
14:'Yield',
15:'Stop',
16:'No vehicles',
17:'Veh > 3.5 tons prohibited',
18:'No entry',
19:'General caution',
20:'Dangerous curve left',
21:'Dangerous curve right',
22:'Double curve',
23:'Bumpy road',
24:'Slippery road',
25:'Road narrows on the right',
26:'Road work',
27:'Traffic signals',
28:'Pedestrians',
29:'Children crossing',
30:'Bicycles crossing',
31:'Beware of ice/snow',
32:'Wild animals crossing',
33:'End speed + passing limits',
34:'Turn right ahead',
35:'Turn left ahead',
36:'Ahead only',
37:'Go straight or right',
38:'Go straight or left',
39:'Keep right',
40:'Keep left',
41:'Roundabout mandatory',
42:'End of no passing',
43:'End no passing veh > 3.5 tons' }
if request. method == "POST":
#image=request. form["fileupload"]
f = request.files['file']
# Save the file to ./uploads
basepath = os.path.dirname(__file__)
file_path = os.path.join(
basepath, 'uploads', secure_filename(f.filename))
f.save(file_path)
image = Image.open(file_path)
image = image.resize((30,30))
image = numpy.expand_dims(image, axis=0)
image = numpy.array(image)
pred = model.predict_classes([image])[0]
sign = classes[pred+1]
return render_template('traffic.html', prediction_text='This sign represents {}'.format(sign))
if __name__ == "__main__":
app.run(debug=True)
Я получаю ошибку
tenorflow. python .framework.errors_impl.InvalidArgumentError tenorflow. python .framework.errors_impl.InvalidArgumentError: Tensor conv2d_1_input: 0, указанный в либо feed_devices, либо fetch_devices не найдены в Графике
что с этим делать ??