Загрузить keras модель h5 неизвестные метрики - PullRequest
0 голосов
/ 30 апреля 2020

Я обучил keras CNN мониторить метрики следующим образом:

METRICS = [
  TruePositives(name='tp'),
  FalsePositives(name='fp'),
  TrueNegatives(name='tn'),
  FalseNegatives(name='fn'), 
  BinaryAccuracy(name='accuracy'),
  Precision(name='precision'),
  Recall(name='recall'),
  AUC(name='auc'),
 ]

, а затем model.compile:

 model.compile(optimizer='nadam', loss='binary_crossentropy',
         metrics=METRICS)

он работает отлично, и я сохранил свою модель h5 ( model.h5).

Теперь я скачал модель и хотел бы использовать ее в другом скрипте, импортирующем модель с:

 from keras.models import load_model
 model = load_model('model.h5')
 model.predict(....)

, но во время работы компилятор возвращает:

 ValueError: Unknown metric function: {'class_name': 'TruePositives', 'config': {'name': 'tp', 'dtype': 'float32', 'thresholds': None}}

Как мне решить эту проблему?

Заранее спасибо

1 Ответ

2 голосов
/ 30 апреля 2020

Если у вас есть собственные метрики, вам нужно следовать немного другому подходу.

  1. Создать модель, обучить и сохранить модель
  2. Загрузить модель с custom_objects и compile = False
  3. Наконец, скомпилируйте модель с помощью custom_objects

Я показываю подход здесь

import tensorflow as tf
from tensorflow import keras
mnist = tf.keras.datasets.mnist

(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

# Custom Loss1 (for example) 
#@tf.function() 
def customLoss1(yTrue,yPred):
  return tf.reduce_mean(yTrue-yPred) 

# Custom Loss2 (for example) 
#@tf.function() 
def customLoss2(yTrue, yPred):
  return tf.reduce_mean(tf.square(tf.subtract(yTrue,yPred))) 

def create_model():
  model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(512, activation=tf.nn.relu),  
    tf.keras.layers.Dropout(0.2),
    tf.keras.layers.Dense(10, activation=tf.nn.softmax)
    ])
  model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy', customLoss1, customLoss2])
  return model 

# Create a basic model instance
model=create_model()

# Fit and evaluate model 
model.fit(x_train, y_train, epochs=5)

loss, acc,loss1, loss2 = model.evaluate(x_test, y_test,verbose=1)
print("Original model, accuracy: {:5.2f}%".format(100*acc)) # Original model, accuracy: 98.11%

# saving the model
model.save('./Mymodel',save_format='tf')

# load the model
loaded_model = tf.keras.models.load_model('./Mymodel',custom_objects={'customLoss1':customLoss1,'customLoss2':customLoss2},compile=False)

# compile the model
loaded_model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy', customLoss1, customLoss2])

# loaded model also has same accuracy, metrics and loss
loss, acc,loss1, loss2 = loaded_model.evaluate(x_test, y_test,verbose=1)
print("Loaded model, accuracy: {:5.2f}%".format(100*acc)) #Loaded model, accuracy: 98.11%
...