Pytorch с графическим процессором на Docker Ошибка контейнера - устройство с поддержкой CUDA не обнаружено - PullRequest
3 голосов
/ 20 марта 2020

Я пытаюсь использовать Pytorch с графическим процессором в моем Docker контейнере.

1. На хосте - У меня установлен nvidia- docker, драйвер CUDA et c

Вот вывод nvidia-smi с хоста:

    Fri Mar 20 04:29:49 2020       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 440.64.00    Driver Version: 440.64.00    CUDA Version: 10.2     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Tesla K80           Off  | 00000000:00:04.0 Off |                    0 |
| N/A   33C    P8    28W / 149W |     16MiB / 11441MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0      1860      G   /usr/lib/xorg/Xorg                            15MiB |
+-----------------------------------------------------------------------------+

2. На Docker контейнере (Dockerfile для приложения - Docker Compose File ниже) -

FROM ubuntu:latest
FROM dsksd/pytorch:0.4
#FROM nvidia/cuda:10.1-base-ubuntu18.04 
#FROM nablascom/cuda-pytorch
#FROM nvidia/cuda:10.0-base

RUN apt-get update -y --fix-missing
RUN apt-get install -y python3-pip python3-dev build-essential
RUN apt-get install -y sudo curl
#RUN sudo apt-get install -y nvidia-container-toolkit
#RUN apt-get install -y curl python3.7 python3-pip python3.7-dev python3.7-distutils build-essential
#RUN apt-get install -y curl
#RUN apt-get install -y sudo
#RUN curl -O http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-repo-ubuntu1604_10.0.130-1_amd64.deb
#RUN sudo dpkg -i cuda-repo-ubuntu1604_10.0.130-1_amd64.deb
#RUN sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub
#RUN sudo apt-get install cuda -y
#----------
# Add the package repositories
#RUN distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
#RUN curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
#RUN curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
#RUN sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
#RUN sudo systemctl restart docker
ENV NVIDIA_VISIBLE_DEVICES all
ENV NVIDIA_DRIVER_CAPABILITIES compute,utility
ENV LD_LIBRARY_PATH $LD_LIBRARY_PATH:/usr/local/cuda-10.1/compat/
ENV PYTHONPATH $PATH
#----------
ENV LC_ALL=mylocale.utf8
COPY . /app
WORKDIR /app
RUN pip3 install -r requirements.txt
ENTRYPOINT ["python3"]
EXPOSE 5000
CMD ["hook.py"]

Когда я пытаюсь запустить свой код на GPU, я сталкиваюсь с:

>>> torch.cuda.current_device()
THCudaCheck FAIL file=/pytorch/aten/src/THC/THCGeneral.cpp line=50 error=100 : no CUDA-capable device is detected
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/usr/local/lib/python3.6/dist-packages/torch/cuda/__init__.py", line 386, in current_device
    _lazy_init()
  File "/usr/local/lib/python3.6/dist-packages/torch/cuda/__init__.py", line 193, in _lazy_init
    torch._C._cuda_init()
RuntimeError: cuda runtime error (100) : no CUDA-capable device is detected at /pytorch/aten/src/THC/THCGeneral.cpp:50

Я вызываю контейнер, используя: docker-compose up --build

Вот мой файл docker -compose.yaml:

version: '3.6'
services:
  rdb:
    image: mysql:5.7
    #restart: always
    environment:
      MYSQL_DATABASE: 'c_rdb'
      MYSQL_USER: 'user'
      MYSQL_PASSWORD: 'password'
      MYSQL_ROOT_PASSWORD: '123123'
    #ports:
    #  - '3306:3306'
    #expose:
    #  - '3306'
    volumes:
      - rdb-data:/var/lib/mysql
      - ./init-db/init.sql:/docker-entrypoint-initdb.d/init.sql
  mongo:
    image: mongo
    #restart: always
    environment:
      MONGO_INITDB_ROOT_USERNAME: root
      MONGO_INITDB_ROOT_PASSWORD: 12312323
      MONGO_INITDB_DATABASE: chronicler_ndb
    volumes:
      - ndb-data:/data/db
      - ./init-db/init.js:/docker-entrypoint-initdb.d/init.js
    ports:
      - '27017-27019:27017-27019'
  mongo-express:
    image: mongo-express
    #restart: always
    depends_on:
        - mongo
        - backend
    ports:
      - 8081:8081
    environment:
      ME_CONFIG_MONGODB_ADMINUSERNAME: rooer
      ME_CONFIG_MONGODB_ADMINPASSWORD: 123123
  redis:
    image: redis:latest
    command: ["redis-server", "--appendonly", "yes"]
    hostname: redis
    #ports:
    #  - "6379:6379"
    volumes:
      - cache-data:/data
  backend:
    build: ./app
    ports:
     - "5000:5000"
    volumes:
     - backend-data:/code
    links: 
     - rdb
     - redis

volumes:
  rdb-data:
    name: c-relational-data
  ndb-data:
    name: c-nosql-data
  cache-data:
    name: redis-data
  backend-data:
    name: backend-engine

1 Ответ

1 голос
/ 20 марта 2020

Для этого нужны параметры runtime, но параметр времени выполнения недоступен при форматировании файла компоновки 3. Поэтому есть некоторые параметры

  1. Понизьте версию вашего файла компоновки до 2, так что-то вроде этого :
version: 2
  backend:
    build: ./app
    ports:
     - "5000:5000"
    volumes:
     - backend-data:/code
    links: 
     - rdb
     - redis
    runtime: nvidia
Или вручную запустить контейнер, используя docker run с аргументом --runtime=nvidia

Также я рекомендую использовать изображение, созданное nvidia вместо ubuntu:latest


Для более подробную информацию вы можете прочитать здесь

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...