Внедрение VGG-19 Tensorflow 2.0 - PullRequest
       55

Внедрение VGG-19 Tensorflow 2.0

0 голосов
/ 12 апреля 2020

Я пытаюсь реализовать VGG-19 CNN в наборе данных CIFAR-10, где изображения имеют размерность (32, 32, 3). В тренировочном наборе 50000 изображений, а в тестовом наборе 10000 изображений. Я использую Python 3.7 и TensorFlow 2.0. Я предварительно обработал набор данных, нормализовав его -

# Normalize the training and testing datasets-
X_train /= 255.0
X_test /= 255.0

Затем я разработал CNN-

def vgg_19():

    """
    Function to define the architecture of a convolutional neural network
    model following VGG-19 architecture for CIFAR-10 dataset.

    Vgg-19 architecture-
    64, 64, pool                 -- convolutional layers
    128, 128, pool               -- convolutional layers
    256, 256, 256, 256, max-pool -- convolutional layers
    512, 512, 512, 512, max-pool -- convolutional layers
    512, 512, 512, 512, avg-pool -- convolutional layers
    256, 256, 10                 -- fully connected layers

    Output: Returns designed and compiled convolutional neural network model
    """


    l = tf.keras.layers

    model = Sequential()

    model.add(
    Conv2D(
            filters = 64, kernel_size = (3, 3),
            activation='relu', kernel_initializer = tf.initializers.GlorotUniform(),
            strides = (1, 1), padding = 'same',
            input_shape=(32, 32, 3)
        )
    )

    model.add(
    Conv2D(
            filters = 64, kernel_size = (3, 3),
            activation='relu', kernel_initializer = tf.initializers.GlorotUniform(),
            strides = (1, 1), padding = 'same'
        )
    )

    model.add(
    MaxPooling2D(
            pool_size = (2, 2),
            strides = (2, 2)
        )
    )

    model.add(
    Conv2D(
            filters = 128, kernel_size = (3, 3),
            activation='relu', kernel_initializer = tf.initializers.GlorotUniform(),
            strides = (1, 1), padding = 'same'
        )
    )

    model.add(
    Conv2D(
            filters = 128, kernel_size = (3, 3),
            activation='relu', kernel_initializer = tf.initializers.GlorotUniform(),
            strides = (1, 1), padding = 'same'
        )
    )

    model.add(
    MaxPooling2D(
            pool_size = (2, 2),
            strides = (2, 2)
        )
    )

    model.add(
    Conv2D(
            filters = 256, kernel_size = (3, 3),
            activation='relu', kernel_initializer = tf.initializers.GlorotUniform(),
            strides = (1, 1), padding = 'same'
        )
    )

    model.add(
    Conv2D(
            filters = 256, kernel_size = (3, 3),
            activation='relu', kernel_initializer = tf.initializers.GlorotUniform(),
            strides = (1, 1), padding = 'same'
        )
    )

    model.add(
    Conv2D(
            filters = 256, kernel_size = (3, 3),
            activation='relu', kernel_initializer = tf.initializers.GlorotUniform(),
            strides = (1, 1), padding = 'same'
        )
    )

    model.add(
    Conv2D(
            filters = 256, kernel_size = (3, 3),
            activation='relu', kernel_initializer = tf.initializers.GlorotUniform(),
            strides = (1, 1), padding = 'same'
        )
    )

    model.add(
    MaxPooling2D(
            pool_size = (2, 2),
            strides = (2, 2)
        )
    )

    model.add(
    Conv2D(
            filters = 512, kernel_size = (3, 3),
            activation='relu', kernel_initializer = tf.initializers.GlorotUniform(),
            strides = (1, 1), padding = 'same'
        )
    )

    model.add(
    Conv2D(
            filters = 512, kernel_size = (3, 3),
            activation='relu', kernel_initializer = tf.initializers.GlorotUniform(),
            strides = (1, 1), padding = 'same'
        )
    )

    model.add(
    Conv2D(
            filters = 512, kernel_size = (3, 3),
            activation='relu', kernel_initializer = tf.initializers.GlorotUniform(),
            strides = (1, 1), padding = 'same'
        )
    )

    model.add(
    Conv2D(
            filters = 512, kernel_size = (3, 3),
            activation='relu', kernel_initializer = tf.initializers.GlorotUniform(),
            strides = (1, 1), padding = 'same'
        )
    )

    model.add(
    MaxPooling2D(
            pool_size = (2, 2),
            strides = (2, 2)
        )
    )

    model.add(
    Conv2D(
            filters = 512, kernel_size = (3, 3),
            activation='relu', kernel_initializer = tf.initializers.GlorotUniform(),
            strides = (1, 1), padding = 'same'
        )
    )

    model.add(
    Conv2D(
            filters = 512, kernel_size = (3, 3),
            activation='relu', kernel_initializer = tf.initializers.GlorotUniform(),
            strides = (1, 1), padding = 'same'
        )
    )

    model.add(
    Conv2D(
            filters = 512, kernel_size = (3, 3),
            activation='relu', kernel_initializer = tf.initializers.GlorotUniform(),
            strides = (1, 1), padding = 'same'
        )
    )

    model.add(
    Conv2D(
            filters = 512, kernel_size = (3, 3),
            activation='relu', kernel_initializer = tf.initializers.GlorotUniform(),
            strides = (1, 1), padding = 'same'
        )
    )


    model.add(
    AveragePooling2D(
        pool_size=(2, 2), strides=(2, 2)
    )
    )


    '''
    model.add(
        MaxPooling2D(
            pool_size = (2, 2),
            strides = (2, 2)
        )
    )
    '''

    model.add(Flatten())


    model.add(
    Dense(
            units = 256, activation='relu'
        )
    )

    model.add(
    Dense(
            units = 256, activation='relu'
        )
    )

    '''
    model.add(
    Dense(
            units = 1000, activation='relu'
        )
    )
    '''

    model.add(
    Dense(
            units = 10, activation='softmax'
        )
    )


    # Compile pruned CNN-
    model.compile(
        loss=tf.keras.losses.categorical_crossentropy,
        # optimizer='adam',
        optimizer = tf.keras.optimizers.SGD(learning_rate=0.01, momentum=0.9),
        metrics=['accuracy']
    )

    return model

Однако, когда я пытаюсь обучить его -

history = orig_model.fit(
        x = X_train, y = y_train,
        batch_size = batch_size,
        epochs = num_epochs,
        verbose = 1,
        # callbacks = callback,
        validation_data = (X_test, y_test),
        shuffle = True
    )

Спроектированная CNN дает точность проверки около 9%.

Что происходит?

1 Ответ

2 голосов
/ 17 апреля 2020

Крайне низкая точность проверки обусловлена ​​инициализатором Glorot. После изменения его на «он нормальный», VGG-19 CNN начинает обучение и достигает около 77-79% точности проверки.

...