Я делаю классификатор изображений, и эта ошибка возникает, когда я использую Vgg16, Dens eNet, et c. Я видел модель, после печати модели с использованием этого model = models.densenet169(pretrained=True)
.
Теперь это настоящая ошибка -
output = model.forward(images)
---> 90 conf_matrix = confusion_matrix(output, labels, conf_matrix)
91 p = torch.nn.functional.softmax(output, dim=1)
92 prediction = torch.argmax(p, dim=1)
<ipython-input-11-04b29a81a4e9> in confusion_matrix(preds, labels, conf_matrix, title, cmap)
50 preds = torch.argmax(preds, 1)
51 for p, t in zip(preds, labels):
---> 52 conf_matrix[p, t] += 1
53
54 #print(conf_matrix)
Вот как я реализовал свою модель,
model = models.densenet169(pretrained=True)
for param in model.parameters():
param.requires_grad = True
model.fc = nn.Sequential(nn.Linear(1664, 512),
nn.ReLU(),
nn.Dropout(0.4),
nn.Linear(512,128),
nn.ReLU(),
nn.Dropout(0.4),
nn.Linear(128,39),
nn.LogSoftmax(dim=1))
и это моя часть матрицы путаницы -
def confusion_matrix(preds, labels, conf_matrix, title='Confusion matrix', cmap=plt.cm.Blues):
preds = torch.argmax(preds, 1)
for p, t in zip(preds, labels):
conf_matrix[p, t] += 1
#print(conf_matrix)
#plt.imshow(conf_matrix)
TP = conf_matrix.diag()
for c in range(n_classes):
idx = torch.ones(n_classes).byte()
idx[c] = 0
TN = conf_matrix[idx.nonzero()[:,None], idx.nonzero()].sum()
FP = conf_matrix[c, idx].sum()
FN = conf_matrix[idx, c].sum()
Recall = (TP[c] / (TP[c]+FN))
precision = (TP[c] / (TP[c]+FP))
f1 = (2 * ((precision * Recall)/(precision + Recall)))
#print('Class {}\nTP {}, TN {}, FP {}, FN {}'.format(c, TP[c], TN, FP, FN))
#print('Sensitivity = {}'.format(sensitivity))
#print('Specificity = {}'.format(specificity))
return conf_matrix
Может кто-нибудь сказать мне, в чем проблема? Я не знаю, что происходит, потому что для Re sNet все работало нормально. Кроме этого не должно быть никаких ошибок. Спасибо.