все еще довольно плохо знаком с R и отступил на некоторое время, поэтому, пожалуйста, потерпите меня. У меня есть набор данных, который описывает степень мобильности (категориальные данные) после операции через 3 дня. Я искал способ продемонстрировать поток через эти 3 дня.
Я пытался использовать geom_jitter
, где x и y - 1-й и 2-й день, а aes(colour)
- 3-й день, но это не совсем соответствует тому, что я хочу показать. Я немного изучил диаграмму Sankey Diagram и Parallel Coordinates, но у меня нет понимания, чтобы полностью соответствовать образцам, представленным другими, для моих данных.
Это то, что я пробовал:
test %>% filter(!is.na(Mob_D1.factor) & !is.na(Mob_D2.factor) & !is.na(Mob_D3.factor)) %>%
ggplot(aes(x = Mob_D1.factor, y = Mob_D2.factor, colour = Mob_D3.factor)) +
geom_jitter(size = 5, alpha = 0.25, height = 0.25, width = 0.2) +
scale_colour_brewer(palette = "Dark2", name = "Mobilisation on Day 3") +
xlab("Mobilisation on Day 1") +
ylab("Mobilisation on Day 2") + theme_minimal()
Как я уже сказал, не совсем то, что я хочу.
Это пример данных:
structure(list(Mob_D1.factor = structure(c(2L, 2L, 2L, 2L, 4L,
1L, 2L, 2L, 1L, 4L, 2L, 4L, 2L, 1L, 2L, 4L, 4L, 2L, 4L, 4L, 2L,
4L, 2L, 2L, 4L, 2L, 1L, 4L, 4L, 3L, 4L, 2L, 3L, 2L, 2L, 2L, 2L,
2L, 4L, 4L, 2L, 4L, 4L, 2L, 2L, 4L, 2L, 4L, 4L, 4L), .Label = c("None",
"Bed", "Stand", "Assisted Walk"), class = "factor"), Mob_D2.factor = structure(c(2L,
3L, 2L, 4L, 4L, 1L, 3L, 4L, 4L, 4L, 3L, 4L, 2L, 2L, 2L, 4L, 4L,
4L, 4L, 4L, 1L, 4L, 2L, 2L, 4L, 2L, 1L, 4L, 4L, 4L, 4L, 2L, 3L,
2L, 2L, 2L, 4L, 4L, 2L, 4L, 3L, 4L, 4L, 2L, 2L, 4L, 4L, 4L, 4L,
4L), .Label = c("None", "Bed", "Stand", "Assisted Walk"), class = "factor"),
Mob_D3.factor = structure(c(2L, 3L, 2L, 4L, 4L, 1L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 2L, 4L, 4L, 4L, 4L, 4L, 4L, 2L, 4L, 2L,
2L, 4L, 4L, 1L, 4L, 4L, 4L, 4L, 2L, 4L, 4L, 2L, 2L, 4L, 4L,
3L, 4L, 4L, 4L, 4L, 2L, 4L, 4L, 4L, 4L, 4L, 4L), .Label = c("None",
"Bed", "Stand", "Assisted Walk"), class = "factor")), row.names = c(NA,
-50L), class = c("tbl_df", "tbl", "data.frame"))
Заранее спасибо всем, кто нашел время, чтобы ответить. Любое расширенное объяснение будет оценено, поскольку я все еще учусь.
Ларри