Привет, я выбрал набор данных, и мне нужна помощь в увеличении веса или добавлении веса к примерам пониженной выборки. Смотри ниже код
#Separating majority and minority classes
df_majority = data[data.Collected_ind == 1]
df_minority = data[data.Collected_ind == 0]
# Downsample majority class
df_majority_downsampled = resample(df_majority,
replace=False, # sample without replacement
n_samples=152664, # to match minority class
random_state=1) # reproducible results
# Combining minority class with downsampled majority class
df_downsampled = pd.concat([df_majority_downsampled, df_minority])
# Display new class counts
df_downsampled.Collected_ind.value_counts()
df_downsampled['Collected_ind'].value_counts()
df_downsampled['Collected_ind'].value_counts(normalize=True)
#Randomly shuffle the rows.
df_downsampled = df_downsampled.sample(frac=1)
df_downsampled.to_csv("Sampled_Data.csv", index=False)
#Generate a train and test dataset
train = df_downsampled.sample(frac=0.8)
test = df_downsampled.drop(train.index)
train.to_csv("trainNew.csv", index=False)
test.to_csv("testNew.csv", index=False)