Алгоритм быстрого выбора для односвязного списка C ++ - PullRequest
1 голос
/ 20 марта 2020

Мне нужен алгоритм, который может найти медиану односвязного списка в линейной сложности времени O (n) и сложности постоянного пространства O (1).

РЕДАКТИРОВАТЬ: односвязный список представляет собой C Стиль односвязного списка. Stl не допускается (нет контейнера, нет функций, все stl запрещено, например, нет std :: forward_list). Не разрешается перемещать числа в любом другом контейнере (например, в массиве). Допустимо иметь космическую сложность O (logn), поскольку для моих списков это будет даже меньше 100. Кроме того, мне не разрешено использовать функции STL, такие как nth_element

. В основном у меня есть связанный список с 3 * 10 ^ 6 элементами, и мне нужно получить медиану за 3 секунды, поэтому я не могу использовать Алгоритм сортировки для сортировки списка (это будет O (nlogn) и может занять около 10-14 секунд).

Я провел поиск в Интернете и обнаружил, что есть возможность найти Медиана std :: vector в O (n) и O (1) пространственной полноты с quickselect (наихудший случай в O (n ^ 2), но это редко), пример: https://www.geeksforgeeks.org/quickselect-a-simple-iterative-implementation/

Но я не могу найти какой-либо алгоритм, который делает это для связанного списка. Проблема в том, что я могу использовать индекс массива для случайного доступа к вектору. Если я хочу изменить этот алгоритм, сложность будет намного больше, потому что. Например, когда я изменяю сводный индекс влево, мне действительно нужно пройти по списку, чтобы получить этот новый элемент и go дальше (это даст мне по крайней мере O (kn) с большим k для моего списка, даже апроксируя O ( n ^ 2) ...).

РЕДАКТИРОВАТЬ 2:

Я знаю, что у меня слишком много переменных, но я тестировал разные вещи, и я все еще работаю над своим кодом ... Мой текущий код:

#include <bits/stdc++.h>

using namespace std;

template <class T> class Node {
    public:
    T data;
    Node<T> *next;
};

template <class T> class List {
    public:
    Node<T> *first;
};

template <class T> T getMedianValue(List<T> & l) {
    Node<T> *crt,*pivot,*incpivot;
    int left, right, lung, idx, lungrel,lungrel2, left2, right2, aux, offset;
    pivot = l.first;
    crt = pivot->next;
    lung = 1;
//lung is the lenght of the linked list (yeah it's lenght in romanian...)
//lungrel and lungrel2 are the relative lenghts of the part of 
//the list I am processing, e.g: 2 3 4 in a list with 1 2 3 4 5
    right = left = 0;
    while (crt != NULL) { 
        if(crt->data < pivot->data){
            aux = pivot->data;
            pivot->data = crt->data;
            crt->data = pivot->next->data;
            pivot->next->data = aux;
            pivot = pivot->next;
            left++;
        }
        else right++;
       // cout<<crt->data<<endl;
        crt = crt->next; 
        lung++; 
    }
    if(right > left) offset = left;
//  cout<<endl;
//  cout<<pivot->data<<" "<<left<<" "<<right<<endl;
//  printList(l);
//  cout<<endl;
    lungrel = lung;
    incpivot = l.first;
   // offset = 0;
    while(left != right){
        //cout<<"parcurgere"<<endl;
        if(left > right){
            //cout<<endl;
            //printList(l);
            //cout<<endl;
            //cout<<"testleft "<<incpivot->data<<" "<<left<<" "<<right<<endl;
            crt = incpivot->next;
            pivot = incpivot;
            idx = offset;left2 = right2 = lungrel = 0;
            //cout<<idx<<endl;
            while(idx < left && crt!=NULL){
                 if(pivot->data > crt->data){
                   //  cout<<"1crt "<<crt->data<<endl;
                     aux = pivot->data;
                     pivot->data = crt->data;
                     crt->data = pivot->next->data;
                     pivot->next->data = aux;
                     pivot = pivot->next;
                     left2++;lungrel++;
                  }
                  else {
                      right2++;lungrel++;
                      //cout<<crt->data<<" "<<right2<<endl;
                  }
                  //cout<<crt->data<<endl;
                  crt = crt->next;
                  idx++;
             }
             left = left2 + offset;
             right = lung - left - 1;
             if(right > left) offset = left;
             //if(pivot->data == 18) return 18;
             //cout<<endl;
             //cout<<"l "<<pivot->data<<" "<<left<<" "<<right<<" "<<right2<<endl;
           //  printList(l);
        }
        else if(left < right && pivot->next!=NULL){
            idx = left;left2 = right2 = 0;
            incpivot = pivot->next;offset++;left++;
            //cout<<endl;
            //printList(l);
            //cout<<endl;
            //cout<<"testright "<<incpivot->data<<" "<<left<<" "<<right<<endl;
            pivot = pivot->next;
            crt = pivot->next;
            lungrel2 = lungrel;
            lungrel = 0;
           // cout<<"p right"<<pivot->data<<" "<<left<<" "<<right<<endl;
            while((idx < lungrel2 + offset - 1) && crt!=NULL){
                 if(crt->data < pivot->data){
                //     cout<<"crt "<<crt->data<<endl;
                     aux = pivot->data;
                     pivot->data = crt->data;
                     crt->data = (pivot->next)->data;
                     (pivot->next)->data = aux;
                     pivot = pivot->next;
                 //    cout<<"crt2 "<<crt->data<<endl;
                     left2++;lungrel++;
                  }
                  else right2++;lungrel++;
                  //cout<<crt->data<<endl;
                  crt = crt->next;
                  idx++;
             }
             left = left2 + left;
             right = lung - left - 1;
                 if(right > left) offset = left;
            // cout<<"r "<<pivot->data<<" "<<left<<" "<<right<<endl;
           //  printList(l);
        }
        else{
            //cout<<cmx<<endl;
            return pivot->data;
        }
    }
    //cout<<cmx<<endl;
    return pivot->data;
}
template <class T> void printList(List<T> const & l) {
    Node<T> *tmp;
    if(l.first != NULL){
        tmp = l.first;
        while(tmp != NULL){
            cout<<tmp->data<<" ";
            tmp = tmp->next;
        }
    }
}
template <class T> void push_front(List<T> & l, int x)
{
    Node<T>* tmp = new Node<T>;

    tmp->data = x;

    tmp->next = l.first;
    l.first = tmp;
}

int main(){
    List<int> l;
    int n = 0;
    push_front(l, 19);
    push_front(l, 12);
    push_front(l, 11);
    push_front(l, 101);
    push_front(l, 91);
    push_front(l, 21);
    push_front(l, 9);
    push_front(l, 6);
    push_front(l, 25);
    push_front(l, 4);
    push_front(l, 18);
    push_front(l, 2);
    push_front(l, 8);
    push_front(l, 10);
    push_front(l, 200);
    push_front(l, 225);
    push_front(l, 170);
    printList(l);
    n=getMedianValue(l);
    cout<<endl;
    cout<<n;

    return 0;
}

Есть ли у вас какие-либо предположения о том, как адаптировать быстрый выбор к единственной в списке ссылке или другой алгоритм, который будет работать для моей проблемы?

Ответы [ 2 ]

3 голосов
/ 29 марта 2020

В своем вопросе вы упомянули, что у вас возникли проблемы с выбором точки, которая находится не в начале списка, поскольку для этого потребуется пройти по списку. Если вы делаете это правильно, вам нужно только пройти по всему списку дважды:

  1. один раз, чтобы найти середину и конец списка, чтобы выбрать хороший круг (например, с помощью "median-of-three" rule)
  2. один раз для фактической сортировки

Первый шаг не требуется, если вам не слишком важен выбор хорошего центра и вы счастливы, просто выбрав первый элемент списка в качестве точки разворота (что вызывает наихудший случай O (n ^ 2) сложность времени , если данные уже отсортированы).

Если вы вспоминаете конец списка в первый раз, когда просматриваете его, сохраняя указатель на конец, тогда вам никогда не придется проходить его снова, чтобы найти конец. Кроме того, если вы используете стандартную схему разбиения Lomuto (которую я не использую по причинам, указанным ниже), то вы также должны поддерживать два указателя в списке, которые представляют i и j Индекс стандартной схемы разбиения Lomuto. Используя эти указатели, вам никогда не придется проходить через список для доступа к одному элементу.

Кроме того, если вы сохраняете указатель на середину и конец каждого раздела, тогда, когда вы позже должны отсортировать один из этих разделов вам не придется проходить через этот раздел снова, чтобы найти середину и конец.

Теперь я создал собственную реализацию алгоритма QuickSelect для связанных списков, который у меня есть. размещено ниже.

Поскольку вы заявили, что связанный список является односвязным и не может быть обновлен до двусвязного списка, я не могу использовать схему разбиения Hoare , поскольку она выполняет итерацию односвязный список задом наперед очень дорогой. Поэтому вместо этого я использую в целом менее эффективную схему разбиения Lomuto .

При использовании схемы разбиения Lomuto первый элемент или последний элемент обычно выбирается в качестве сводного. Однако выбор любого из них имеет недостаток, заключающийся в том, что отсортированные данные приведут к тому, что алгоритм будет иметь наихудшую временную сложность O (n ^ 2). Этого можно избежать, выбрав стержень в соответствии с правилом «медиана-три» , который должен выбирать стержень из значения медианы первого элемента, среднего элемента и последнего элемента. Поэтому в моей реализации я использую это правило «медиана-три».

Кроме того, схема разделов Lomuto обычно создает два раздела, один для значений, меньших, чем сводная, и один для значений, больших или равный оси. Однако это вызовет сложность времени O (n ^ 2) в худшем случае, если все значения будут идентичны. Поэтому в моей реализации я создаю три раздела, один для значений, меньших, чем сводный, один для значений, больших, чем сводный, и один для значений, равных сводной.

Хотя эти меры не полностью исключить вероятность временной сложности O (n ^ 2) в худшем случае, они, по крайней мере, делают ее крайне маловероятной (если входные данные не предоставлены злоумышленником). Чтобы гарантировать временную сложность O (n), необходимо использовать более сложный алгоритм выбора центра, например, медиана медиан .

Одна существенная проблема, с которой я столкнулся, заключается в том, что для четного числа элементов медиана определяется как арифмети c означает двух "средних" или "медианных" элементов. По этой причине я не могу просто написать функцию, аналогичную std::nth_element, потому что, если, например, общее количество элементов равно 14, то я буду искать 7-й и 8-й по величине элемент , Это означает, что мне придется дважды вызывать такую ​​функцию, что было бы неэффективно. Поэтому вместо этого я написал функцию, которая может искать два «медианных» элемента одновременно. Хотя это делает код более сложным, снижение производительности из-за дополнительной сложности кода должно быть минимальным по сравнению с тем преимуществом, что вам не нужно вызывать одну и ту же функцию дважды.

Обратите внимание, что хотя моя реализация отлично компилируется на Компилятор C ++, я бы не назвал это учебником C ++, потому что этот вопрос гласит, что мне запрещено использовать что-либо из стандартной библиотеки шаблонов C ++. Поэтому мой код представляет собой скорее гибрид C кода и кода C ++.

В следующем коде я использую только стандартную библиотеку шаблонов (в частности, функцию std::nth_element) для тестирования моего алгоритма и для проверки результатов. Я не использую ни одну из этих функций в своем реальном алгоритме.

#include <iostream>
#include <iomanip>
#include <cassert>

// The following two headers are only required for testing the algorithm and verifying
// the correctness of its results. They are not used in the algorithm itself.
#include <random>
#include <algorithm>

// The following setting can be changed to print extra debugging information
// possible settings:
// 0: no extra debugging information
// 1: print the state and length of all partitions in every loop iteraton
// 2: additionally print the contents of all partitions (if they are not too big)
#define PRINT_DEBUG_LEVEL 0

template <typename T>
struct Node
{
    T data;
    Node<T> *next;
};

// NOTE:
// The return type is not necessarily the same as the data type. The reason for this is
// that, for example, the data type "int" requires a "double" as a return type, so that 
// the arithmetic mean of "3" and "6" returns "4.5".
// This function may require template specializations to handle overflow or wrapping.
template<typename T, typename U>
U arithmetic_mean( const T &first, const T &second )
{
    return ( static_cast<U>(first) + static_cast<U>(second) ) / 2;
}

//the main loop of the function find_median can be in one of the following three states
enum LoopState
{
    //we are looking for one median value
    LOOPSTATE_LOOKINGFORONE,

    //we are looking for two median values, and the returned median
    //will be the arithmetic mean of the two
    LOOPSTATE_LOOKINGFORTWO,

    //one of the median values has been found, but we are still searching for
    //the second one
    LOOPSTATE_FOUNDONE
};

template <
    typename T, //type of the data
    typename U  //type of the return value
>
U find_median( Node<T> *list )
{
    //This variable points to the pointer to the first element of the current partition.
    //During the partition phase, the linked list will be broken and reassembled afterwards, so
    //the pointer this pointer points to will be nullptr until it is reassembled.
    Node<T> **pp_start = &list;

    //This pointer represents nothing more than the cached value of *pp_start and it is
    //not always valid
    Node<T> *p_start = *pp_start;

    //These pointers are maintained for accessing the middle of the list for selecting a pivot
    //using the "median-of-three" rule.
    Node<T> *p_middle;
    Node<T> *p_end;

    //result is not defined if list is empty
    assert( p_start != nullptr );

    //in the main loop, this variable always holds the number of elements in the current partition
    int num_total = 1;

    // First, we must traverse the entire linked list in order to determine the number of elements,
    // in order to calculate k1 and k2. If it is odd, then the median is defined as the k'th smallest
    // element where k = n / 2. If the number of elements is even, then the median is defined as the
    // arithmetic mean of the k'th element and the (k+1)'th element.
    // We also set a pointer to the nodes in the middle and at the end, which will be required later
    // for selecting a pivot according to the "median-of-three" rule.
    p_middle = p_start;
    for ( p_end = p_start; p_end->next != nullptr; p_end = p_end->next )
    {
        num_total++;
        if ( num_total % 2 == 0 ) p_middle = p_middle->next;
    }   

    // find out whether we are looking for only one or two median values
    enum LoopState loop_state = num_total % 2 == 0 ? LOOPSTATE_LOOKINGFORTWO : LOOPSTATE_LOOKINGFORONE;

    //set k to the index of the middle element, or if there are two middle elements, to the left one
    int k = ( num_total - 1 ) / 2;

    // If we are looking for two median values, but we have only found one, then this variable will
    // hold the value of the one we found. Whether we have found one can be determined by the state of
    // the variable loop_state.
    T val_found;

    for (;;)
    {
        //make p_start cache the value of *pp_start again, because a previous iteration of the loop
        //may have changed the value of pp_start
        p_start = *pp_start;

        assert( p_start   != nullptr );
        assert( p_middle  != nullptr );
        assert( p_end     != nullptr );
        assert( num_total != 0 );

        if ( num_total == 1 )
        {
            switch ( loop_state )
            {
            case LOOPSTATE_LOOKINGFORONE:
                return p_start->data;
            case LOOPSTATE_FOUNDONE:
                return arithmetic_mean<T,U>( val_found, p_start->data );
            default:
                assert( false ); //this should be unreachable
            }
        }

        //select the pivot according to the "median-of-three" rule
        T pivot;
        if ( p_start->data < p_middle->data )
        {
            if ( p_middle->data < p_end->data )
                pivot = p_middle->data;
            else if ( p_start->data < p_end->data )
                pivot = p_end->data;
            else
                pivot = p_start->data;
        }
        else
        {
            if ( p_start->data < p_end->data )
                pivot = p_start->data;
            else if ( p_middle->data < p_end->data )
                pivot = p_end->data;
            else
                pivot = p_middle->data;
        }

#if PRINT_DEBUG_LEVEL >= 1
        //this line is conditionally compiled for extra debugging information
        std::cout << "\nmedian of three: " << (*pp_start)->data << " " << p_middle->data << " " << p_end->data << " ->" << pivot << std::endl;
#endif

        // We will be dividing the current partition into 3 new partitions (less-than,
        // equal-to and greater-than) each represented as a linked list. Each list
        // requires a pointer to the start of the list and a pointer to the pointer at
        // the end of the list to write the address of new elements to. Also, when
        // traversing the lists, we need to keep a pointer to the middle of the list,
        // as this information will be required for selecting a new pivot in the next
        // iteration of the loop. The latter is not required for the equal-to partition,
        // as it would never be used.
        Node<T> *p_less    = nullptr, **pp_less_end    = &p_less,    **pp_less_middle    = &p_less;
        Node<T> *p_equal   = nullptr, **pp_equal_end   = &p_equal;
        Node<T> *p_greater = nullptr, **pp_greater_end = &p_greater, **pp_greater_middle = &p_greater;

        // These pointers are only used as a cache to the location of the end node.
        // Despite their similar name, their function is quite different to pp_less_end
        // and pp_greater_end.
        Node<T> *p_less_end    = nullptr;
        Node<T> *p_greater_end = nullptr;

        // counter for the number of elements in each partition
        int num_less = 0;
        int num_equal = 0;
        int num_greater = 0;

        // NOTE:
        // The following loop will temporarily split the linked list. It will be merged later.

        Node<T> *p_next_node = p_start;

        //the following line isn't necessary; it is only used to clarify that the pointers no
        //longer point to anything meaningful
        *pp_start = p_start = nullptr;

        for ( int i = 0; i < num_total; i++ )
        {
            assert( p_next_node != nullptr );

            Node<T> *p_current_node = p_next_node;
            p_next_node = p_next_node->next;

            if ( p_current_node->data < pivot )
            {
                //link node to pp_less
                assert( *pp_less_end == nullptr );
                *pp_less_end = p_less_end = p_current_node;
                pp_less_end = &p_current_node->next;
                p_current_node->next = nullptr;

                num_less++;
                if ( num_less % 2 == 0 )
                {
                    pp_less_middle = &(*pp_less_middle)->next;
                }
            }
            else if ( p_current_node->data == pivot )
            {
                //link node to pp_equal
                assert( *pp_equal_end == nullptr );
                *pp_equal_end = p_current_node;
                pp_equal_end = &p_current_node->next;
                p_current_node->next = nullptr;

                num_equal++;
            }
            else
            {
                //link node to pp_greater
                assert( *pp_greater_end == nullptr );
                *pp_greater_end = p_greater_end = p_current_node;
                pp_greater_end = &p_current_node->next;
                p_current_node->next = nullptr;

                num_greater++;
                if ( num_greater % 2 == 0 )
                {
                    pp_greater_middle = &(*pp_greater_middle)->next;
                }
            }
        }

        assert( num_total == num_less + num_equal + num_greater );
        assert( num_equal >= 1 );

#if PRINT_DEBUG_LEVEL >= 1
        //this section is conditionally compiled for extra debugging information
        {
            std::cout << std::setfill( '0' );
            switch ( loop_state )
            {
            case LOOPSTATE_LOOKINGFORONE:
                std::cout << "LOOPSTATE_LOOKINGFORONE k = " << k << "\n";
                break;
            case LOOPSTATE_LOOKINGFORTWO:
                std::cout << "LOOPSTATE_LOOKINGFORTWO k = " << k << "\n";
                break;
            case LOOPSTATE_FOUNDONE:
                std::cout << "LOOPSTATE_FOUNDONE k = " << k << " val_found = " << val_found << "\n";
            }
            std::cout << "partition lengths: ";
            std::cout <<
                std::setw( 2 ) << num_less    << " " <<
                std::setw( 2 ) << num_equal   << " " <<
                std::setw( 2 ) << num_greater << " " <<
                std::setw( 2 ) << num_total   << "\n";
#if PRINT_DEBUG_LEVEL >= 2
            Node<T> *p;
            std::cout << "less: ";
            if ( num_less > 10 )
                std::cout << "too many to print";
            else
                for ( p = p_less; p != nullptr; p = p->next ) std::cout << p->data << " ";
            std::cout << "\nequal: ";
            if ( num_equal > 10 )
                std::cout << "too many to print";
            else
                for ( p = p_equal; p != nullptr; p = p->next ) std::cout << p->data << " ";
            std::cout << "\ngreater: ";
            if ( num_greater > 10 )
                std::cout << "too many to print";
            else
                for ( p = p_greater; p != nullptr; p = p->next ) std::cout << p->data << " ";
            std::cout << "\n\n" << std::flush;
#endif
            std::cout << std::flush;
        }
#endif

        //insert less-than partition into list
        assert( *pp_start == nullptr );
        *pp_start = p_less;

        //insert equal-to partition into list
        assert( *pp_less_end == nullptr );
        *pp_less_end = p_equal;

        //insert greater-than partition into list
        assert( *pp_equal_end == nullptr );
        *pp_equal_end = p_greater;

        //link list to previously cut off part
        assert( *pp_greater_end == nullptr );
        *pp_greater_end = p_next_node;

        //if less-than partition is large enough to hold both possible median values
        if ( k + 2 <= num_less )
        {
            //set the next iteration of the loop to process the less-than partition
            //pp_start is already set to the desired value
            p_middle = *pp_less_middle;
            p_end = p_less_end;
            num_total = num_less;
        }

        //else if less-than partition holds one of both possible median values
        else if ( k + 1 == num_less )
        {
            if ( loop_state == LOOPSTATE_LOOKINGFORTWO )
            {
                //the equal_to partition never needs sorting, because all members are already equal
                val_found = p_equal->data;
                loop_state = LOOPSTATE_FOUNDONE;
            }
            //set the next iteration of the loop to process the less-than partition
            //pp_start is already set to the desired value
            p_middle = *pp_less_middle;
            p_end = p_less_end;
            num_total = num_less;
        }

        //else if equal-to partition holds both possible median values
        else if ( k + 2 <= num_less + num_equal )
        {
            //the equal_to partition never needs sorting, because all members are already equal
            if ( loop_state == LOOPSTATE_FOUNDONE )
                return arithmetic_mean<T,U>( val_found, p_equal->data );
            return p_equal->data;
        }

        //else if equal-to partition holds one of both possible median values
        else if ( k + 1 == num_less + num_equal )
        {
            switch ( loop_state )
            {
            case LOOPSTATE_LOOKINGFORONE:
                return p_equal->data;
            case LOOPSTATE_LOOKINGFORTWO:
                val_found = p_equal->data;
                loop_state = LOOPSTATE_FOUNDONE;
                k = 0;
                //set the next iteration of the loop to process the greater-than partition
                pp_start = pp_equal_end;
                p_middle = *pp_greater_middle;
                p_end = p_greater_end;
                num_total = num_greater;
                break;
            case LOOPSTATE_FOUNDONE:
                return arithmetic_mean<T,U>( val_found, p_equal->data );
            }
        }

        //else both possible median values must be in the greater-than partition
        else
        {
            k = k - num_less - num_equal;

            //set the next iteration of the loop to process the greater-than partition
            pp_start = pp_equal_end;
            p_middle = *pp_greater_middle;
            p_end = p_greater_end;
            num_total = num_greater;
        }
    }
}


// NOTE:
// The following code is not part of the algorithm, but is only intended to test the algorithm

// This simple class is designed to contain a singly-linked list
template <typename T>
class List
{
public:
    List() : first( nullptr ) {}

    // the following is required to abide by the rule of three/five/zero
    // see: https://en.cppreference.com/w/cpp/language/rule_of_three
    List( const List<T> & ) = delete;
    List( const List<T> && ) = delete;
    List<T>& operator=( List<T> & ) = delete;
    List<T>& operator=( List<T> && ) = delete;

    ~List()
    {
        Node<T> *p = first;

        while ( p != nullptr )
        {
            Node<T> *temp = p;
            p = p->next;
            delete temp;
        }
    }

    void push_front( int data )
    {
        Node<T> *temp = new Node<T>;

        temp->data = data;

        temp->next = first;
        first = temp;
    }

    //member variables
    Node<T> *first;
};

int main()
{
    //generated random numbers will be between 0 and 2 billion (fits in 32-bit signed int)
    constexpr int min_val = 0;
    constexpr int max_val = 2*1000*1000*1000;

    //will allocate array for 1 million ints and fill with random numbers
    constexpr int num_values = 1*1000*1000;

    //this class contains the singly-linked list and is empty for now
    List<int> l;
    double result;

    //These variables are used for random number generation
    std::random_device rd;
    std::mt19937 gen( rd() );
    std::uniform_int_distribution<> dis( min_val, max_val );

    try
    {
        //fill array with random data
        std::cout << "Filling array with random data..." << std::flush;
        auto unsorted_data = std::make_unique<int[]>( num_values );
        for ( int i = 0; i < num_values; i++ ) unsorted_data[i] = dis( gen );

        //fill the singly-linked list
        std::cout << "done\nFilling linked list..." << std::flush;
        for ( int i = 0; i < num_values; i++ ) l.push_front( unsorted_data[i] );

        std::cout << "done\nCalculating median using STL function..." << std::flush;

        //calculate the median using the functions provided by the C++ standard template library.
        //Note: this is only done to compare the results with the algorithm provided in this file
        if ( num_values % 2 == 0 )
        {
            int median1, median2;

            std::nth_element( &unsorted_data[0], &unsorted_data[(num_values - 1) / 2], &unsorted_data[num_values] );
            median1 = unsorted_data[(num_values - 1) / 2];
            std::nth_element( &unsorted_data[0], &unsorted_data[(num_values - 0) / 2], &unsorted_data[num_values] );
            median2 = unsorted_data[(num_values - 0) / 2];

            result = arithmetic_mean<int,double>( median1, median2 );
        }
        else
        {
            int median;

            std::nth_element( &unsorted_data[0], &unsorted_data[(num_values - 0) / 2], &unsorted_data[num_values] );
            median = unsorted_data[(num_values - 0) / 2];

            result = static_cast<int>(median);
        }

        std::cout << "done\nMedian according to STL function: " << std::setprecision( 12 ) << result << std::endl;

        // NOTE: Since the STL functions only sorted the array, but not the linked list, the 
        //       order of the linked list is still random and not pre-sorted.

        //calculate the median using the algorithm provided in this file
        std::cout << "Starting algorithm" << std::endl;
        result = find_median<int,double>( l.first );
        std::cout << "The calculated median is: " << std::setprecision( 12 ) << result << std::endl;

        std::cout << "Cleaning up\n\n" << std::flush;
    }
    catch ( std::bad_alloc )
    {
        std::cerr << "Error: Unable to allocate sufficient memory!" << std::endl;
        return -1;
    }

    return 0;
}

Я успешно проверил свой код с одним миллионом случайно сгенерированных элементов, и он нашел правильную медиану практически мгновенно.

1 голос
/ 20 марта 2020

Итак, вы можете использовать итераторы для удержания позиции. Я написал алгоритм выше для работы с std :: forward_list. Я знаю, что это не идеально, но написал это быстро и надеюсь, что это поможет.

    int partition(int leftPos, int rightPos, std::forward_list<int>::iterator& currIter, 
    std::forward_list<int>::iterator lowIter, std::forward_list<int>::iterator highIter) {
        auto iter = lowIter;
        int i = leftPos - 1;
        for(int j = leftPos; j < rightPos - 1; j++) {
           if(*iter <= *highIter) {
               ++currIter;
               ++i;
               std::iter_swap(currIter, iter);
           }
           iter++;
        }
        std::forward_list<int>::iterator newIter = currIter;
        std::iter_swap(++newIter, highIter);
        return i + 1;
    }

   std::forward_list<int>::iterator kthSmallest(std::forward_list<int>& list, 
   std::forward_list<int>::iterator left, std::forward_list<int>::iterator right, int size, int k) {
       int leftPos {0};
       int rightPos {size};
       int pivotPos {0};

       std::forward_list<int>::iterator resetIter = left;
       std::forward_list<int>::iterator currIter = left;
       ++left;
       while(leftPos <= rightPos) {
           pivotPos = partition(leftPos, rightPos, currIter, left, right);

           if(pivotPos == (k-1)) {
               return currIter;
           } else if(pivotPos > (k-1)) {
               right = currIter;
               rightPos = pivotPos - 1;
           } else {
               left = currIter;
               ++left;
               resetIter = left;
               ++left;
               leftPos = pivotPos + 1;
           }

           currIter = resetIter;
       }

       return list.end();
  }

Когда вы вызываете kth iter, левый итератор должен быть на единицу меньше, чем вы собираетесь его запустить. Это позволяет нам быть на одну позицию позади low в partition(). Вот пример выполнения этого:

int main() {
    std::forward_list<int> list {10, 12, 12, 13, 4, 5, 8, 11, 6, 26, 15, 21};
    auto startIter = list.before_begin();
    int k = 6;
    int size = getSize(list);

    auto kthIter = kthSmallest(list, startIter, getEnd(list), size - 1, k);
    std::cout << k << "th smallest: " << *kthIter << std::endl;

    return 0;
}

6-е наименьшее: 10

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...