В своем вопросе вы упомянули, что у вас возникли проблемы с выбором точки, которая находится не в начале списка, поскольку для этого потребуется пройти по списку. Если вы делаете это правильно, вам нужно только пройти по всему списку дважды:
- один раз, чтобы найти середину и конец списка, чтобы выбрать хороший круг (например, с помощью "median-of-three" rule)
- один раз для фактической сортировки
Первый шаг не требуется, если вам не слишком важен выбор хорошего центра и вы счастливы, просто выбрав первый элемент списка в качестве точки разворота (что вызывает наихудший случай O (n ^ 2) сложность времени , если данные уже отсортированы).
Если вы вспоминаете конец списка в первый раз, когда просматриваете его, сохраняя указатель на конец, тогда вам никогда не придется проходить его снова, чтобы найти конец. Кроме того, если вы используете стандартную схему разбиения Lomuto (которую я не использую по причинам, указанным ниже), то вы также должны поддерживать два указателя в списке, которые представляют i
и j
Индекс стандартной схемы разбиения Lomuto. Используя эти указатели, вам никогда не придется проходить через список для доступа к одному элементу.
Кроме того, если вы сохраняете указатель на середину и конец каждого раздела, тогда, когда вы позже должны отсортировать один из этих разделов вам не придется проходить через этот раздел снова, чтобы найти середину и конец.
Теперь я создал собственную реализацию алгоритма QuickSelect для связанных списков, который у меня есть. размещено ниже.
Поскольку вы заявили, что связанный список является односвязным и не может быть обновлен до двусвязного списка, я не могу использовать схему разбиения Hoare , поскольку она выполняет итерацию односвязный список задом наперед очень дорогой. Поэтому вместо этого я использую в целом менее эффективную схему разбиения Lomuto .
При использовании схемы разбиения Lomuto первый элемент или последний элемент обычно выбирается в качестве сводного. Однако выбор любого из них имеет недостаток, заключающийся в том, что отсортированные данные приведут к тому, что алгоритм будет иметь наихудшую временную сложность O (n ^ 2). Этого можно избежать, выбрав стержень в соответствии с правилом «медиана-три» , который должен выбирать стержень из значения медианы первого элемента, среднего элемента и последнего элемента. Поэтому в моей реализации я использую это правило «медиана-три».
Кроме того, схема разделов Lomuto обычно создает два раздела, один для значений, меньших, чем сводная, и один для значений, больших или равный оси. Однако это вызовет сложность времени O (n ^ 2) в худшем случае, если все значения будут идентичны. Поэтому в моей реализации я создаю три раздела, один для значений, меньших, чем сводный, один для значений, больших, чем сводный, и один для значений, равных сводной.
Хотя эти меры не полностью исключить вероятность временной сложности O (n ^ 2) в худшем случае, они, по крайней мере, делают ее крайне маловероятной (если входные данные не предоставлены злоумышленником). Чтобы гарантировать временную сложность O (n), необходимо использовать более сложный алгоритм выбора центра, например, медиана медиан .
Одна существенная проблема, с которой я столкнулся, заключается в том, что для четного числа элементов медиана определяется как арифмети c означает двух "средних" или "медианных" элементов. По этой причине я не могу просто написать функцию, аналогичную std::nth_element
, потому что, если, например, общее количество элементов равно 14, то я буду искать 7-й и 8-й по величине элемент , Это означает, что мне придется дважды вызывать такую функцию, что было бы неэффективно. Поэтому вместо этого я написал функцию, которая может искать два «медианных» элемента одновременно. Хотя это делает код более сложным, снижение производительности из-за дополнительной сложности кода должно быть минимальным по сравнению с тем преимуществом, что вам не нужно вызывать одну и ту же функцию дважды.
Обратите внимание, что хотя моя реализация отлично компилируется на Компилятор C ++, я бы не назвал это учебником C ++, потому что этот вопрос гласит, что мне запрещено использовать что-либо из стандартной библиотеки шаблонов C ++. Поэтому мой код представляет собой скорее гибрид C кода и кода C ++.
В следующем коде я использую только стандартную библиотеку шаблонов (в частности, функцию std::nth_element
) для тестирования моего алгоритма и для проверки результатов. Я не использую ни одну из этих функций в своем реальном алгоритме.
#include <iostream>
#include <iomanip>
#include <cassert>
// The following two headers are only required for testing the algorithm and verifying
// the correctness of its results. They are not used in the algorithm itself.
#include <random>
#include <algorithm>
// The following setting can be changed to print extra debugging information
// possible settings:
// 0: no extra debugging information
// 1: print the state and length of all partitions in every loop iteraton
// 2: additionally print the contents of all partitions (if they are not too big)
#define PRINT_DEBUG_LEVEL 0
template <typename T>
struct Node
{
T data;
Node<T> *next;
};
// NOTE:
// The return type is not necessarily the same as the data type. The reason for this is
// that, for example, the data type "int" requires a "double" as a return type, so that
// the arithmetic mean of "3" and "6" returns "4.5".
// This function may require template specializations to handle overflow or wrapping.
template<typename T, typename U>
U arithmetic_mean( const T &first, const T &second )
{
return ( static_cast<U>(first) + static_cast<U>(second) ) / 2;
}
//the main loop of the function find_median can be in one of the following three states
enum LoopState
{
//we are looking for one median value
LOOPSTATE_LOOKINGFORONE,
//we are looking for two median values, and the returned median
//will be the arithmetic mean of the two
LOOPSTATE_LOOKINGFORTWO,
//one of the median values has been found, but we are still searching for
//the second one
LOOPSTATE_FOUNDONE
};
template <
typename T, //type of the data
typename U //type of the return value
>
U find_median( Node<T> *list )
{
//This variable points to the pointer to the first element of the current partition.
//During the partition phase, the linked list will be broken and reassembled afterwards, so
//the pointer this pointer points to will be nullptr until it is reassembled.
Node<T> **pp_start = &list;
//This pointer represents nothing more than the cached value of *pp_start and it is
//not always valid
Node<T> *p_start = *pp_start;
//These pointers are maintained for accessing the middle of the list for selecting a pivot
//using the "median-of-three" rule.
Node<T> *p_middle;
Node<T> *p_end;
//result is not defined if list is empty
assert( p_start != nullptr );
//in the main loop, this variable always holds the number of elements in the current partition
int num_total = 1;
// First, we must traverse the entire linked list in order to determine the number of elements,
// in order to calculate k1 and k2. If it is odd, then the median is defined as the k'th smallest
// element where k = n / 2. If the number of elements is even, then the median is defined as the
// arithmetic mean of the k'th element and the (k+1)'th element.
// We also set a pointer to the nodes in the middle and at the end, which will be required later
// for selecting a pivot according to the "median-of-three" rule.
p_middle = p_start;
for ( p_end = p_start; p_end->next != nullptr; p_end = p_end->next )
{
num_total++;
if ( num_total % 2 == 0 ) p_middle = p_middle->next;
}
// find out whether we are looking for only one or two median values
enum LoopState loop_state = num_total % 2 == 0 ? LOOPSTATE_LOOKINGFORTWO : LOOPSTATE_LOOKINGFORONE;
//set k to the index of the middle element, or if there are two middle elements, to the left one
int k = ( num_total - 1 ) / 2;
// If we are looking for two median values, but we have only found one, then this variable will
// hold the value of the one we found. Whether we have found one can be determined by the state of
// the variable loop_state.
T val_found;
for (;;)
{
//make p_start cache the value of *pp_start again, because a previous iteration of the loop
//may have changed the value of pp_start
p_start = *pp_start;
assert( p_start != nullptr );
assert( p_middle != nullptr );
assert( p_end != nullptr );
assert( num_total != 0 );
if ( num_total == 1 )
{
switch ( loop_state )
{
case LOOPSTATE_LOOKINGFORONE:
return p_start->data;
case LOOPSTATE_FOUNDONE:
return arithmetic_mean<T,U>( val_found, p_start->data );
default:
assert( false ); //this should be unreachable
}
}
//select the pivot according to the "median-of-three" rule
T pivot;
if ( p_start->data < p_middle->data )
{
if ( p_middle->data < p_end->data )
pivot = p_middle->data;
else if ( p_start->data < p_end->data )
pivot = p_end->data;
else
pivot = p_start->data;
}
else
{
if ( p_start->data < p_end->data )
pivot = p_start->data;
else if ( p_middle->data < p_end->data )
pivot = p_end->data;
else
pivot = p_middle->data;
}
#if PRINT_DEBUG_LEVEL >= 1
//this line is conditionally compiled for extra debugging information
std::cout << "\nmedian of three: " << (*pp_start)->data << " " << p_middle->data << " " << p_end->data << " ->" << pivot << std::endl;
#endif
// We will be dividing the current partition into 3 new partitions (less-than,
// equal-to and greater-than) each represented as a linked list. Each list
// requires a pointer to the start of the list and a pointer to the pointer at
// the end of the list to write the address of new elements to. Also, when
// traversing the lists, we need to keep a pointer to the middle of the list,
// as this information will be required for selecting a new pivot in the next
// iteration of the loop. The latter is not required for the equal-to partition,
// as it would never be used.
Node<T> *p_less = nullptr, **pp_less_end = &p_less, **pp_less_middle = &p_less;
Node<T> *p_equal = nullptr, **pp_equal_end = &p_equal;
Node<T> *p_greater = nullptr, **pp_greater_end = &p_greater, **pp_greater_middle = &p_greater;
// These pointers are only used as a cache to the location of the end node.
// Despite their similar name, their function is quite different to pp_less_end
// and pp_greater_end.
Node<T> *p_less_end = nullptr;
Node<T> *p_greater_end = nullptr;
// counter for the number of elements in each partition
int num_less = 0;
int num_equal = 0;
int num_greater = 0;
// NOTE:
// The following loop will temporarily split the linked list. It will be merged later.
Node<T> *p_next_node = p_start;
//the following line isn't necessary; it is only used to clarify that the pointers no
//longer point to anything meaningful
*pp_start = p_start = nullptr;
for ( int i = 0; i < num_total; i++ )
{
assert( p_next_node != nullptr );
Node<T> *p_current_node = p_next_node;
p_next_node = p_next_node->next;
if ( p_current_node->data < pivot )
{
//link node to pp_less
assert( *pp_less_end == nullptr );
*pp_less_end = p_less_end = p_current_node;
pp_less_end = &p_current_node->next;
p_current_node->next = nullptr;
num_less++;
if ( num_less % 2 == 0 )
{
pp_less_middle = &(*pp_less_middle)->next;
}
}
else if ( p_current_node->data == pivot )
{
//link node to pp_equal
assert( *pp_equal_end == nullptr );
*pp_equal_end = p_current_node;
pp_equal_end = &p_current_node->next;
p_current_node->next = nullptr;
num_equal++;
}
else
{
//link node to pp_greater
assert( *pp_greater_end == nullptr );
*pp_greater_end = p_greater_end = p_current_node;
pp_greater_end = &p_current_node->next;
p_current_node->next = nullptr;
num_greater++;
if ( num_greater % 2 == 0 )
{
pp_greater_middle = &(*pp_greater_middle)->next;
}
}
}
assert( num_total == num_less + num_equal + num_greater );
assert( num_equal >= 1 );
#if PRINT_DEBUG_LEVEL >= 1
//this section is conditionally compiled for extra debugging information
{
std::cout << std::setfill( '0' );
switch ( loop_state )
{
case LOOPSTATE_LOOKINGFORONE:
std::cout << "LOOPSTATE_LOOKINGFORONE k = " << k << "\n";
break;
case LOOPSTATE_LOOKINGFORTWO:
std::cout << "LOOPSTATE_LOOKINGFORTWO k = " << k << "\n";
break;
case LOOPSTATE_FOUNDONE:
std::cout << "LOOPSTATE_FOUNDONE k = " << k << " val_found = " << val_found << "\n";
}
std::cout << "partition lengths: ";
std::cout <<
std::setw( 2 ) << num_less << " " <<
std::setw( 2 ) << num_equal << " " <<
std::setw( 2 ) << num_greater << " " <<
std::setw( 2 ) << num_total << "\n";
#if PRINT_DEBUG_LEVEL >= 2
Node<T> *p;
std::cout << "less: ";
if ( num_less > 10 )
std::cout << "too many to print";
else
for ( p = p_less; p != nullptr; p = p->next ) std::cout << p->data << " ";
std::cout << "\nequal: ";
if ( num_equal > 10 )
std::cout << "too many to print";
else
for ( p = p_equal; p != nullptr; p = p->next ) std::cout << p->data << " ";
std::cout << "\ngreater: ";
if ( num_greater > 10 )
std::cout << "too many to print";
else
for ( p = p_greater; p != nullptr; p = p->next ) std::cout << p->data << " ";
std::cout << "\n\n" << std::flush;
#endif
std::cout << std::flush;
}
#endif
//insert less-than partition into list
assert( *pp_start == nullptr );
*pp_start = p_less;
//insert equal-to partition into list
assert( *pp_less_end == nullptr );
*pp_less_end = p_equal;
//insert greater-than partition into list
assert( *pp_equal_end == nullptr );
*pp_equal_end = p_greater;
//link list to previously cut off part
assert( *pp_greater_end == nullptr );
*pp_greater_end = p_next_node;
//if less-than partition is large enough to hold both possible median values
if ( k + 2 <= num_less )
{
//set the next iteration of the loop to process the less-than partition
//pp_start is already set to the desired value
p_middle = *pp_less_middle;
p_end = p_less_end;
num_total = num_less;
}
//else if less-than partition holds one of both possible median values
else if ( k + 1 == num_less )
{
if ( loop_state == LOOPSTATE_LOOKINGFORTWO )
{
//the equal_to partition never needs sorting, because all members are already equal
val_found = p_equal->data;
loop_state = LOOPSTATE_FOUNDONE;
}
//set the next iteration of the loop to process the less-than partition
//pp_start is already set to the desired value
p_middle = *pp_less_middle;
p_end = p_less_end;
num_total = num_less;
}
//else if equal-to partition holds both possible median values
else if ( k + 2 <= num_less + num_equal )
{
//the equal_to partition never needs sorting, because all members are already equal
if ( loop_state == LOOPSTATE_FOUNDONE )
return arithmetic_mean<T,U>( val_found, p_equal->data );
return p_equal->data;
}
//else if equal-to partition holds one of both possible median values
else if ( k + 1 == num_less + num_equal )
{
switch ( loop_state )
{
case LOOPSTATE_LOOKINGFORONE:
return p_equal->data;
case LOOPSTATE_LOOKINGFORTWO:
val_found = p_equal->data;
loop_state = LOOPSTATE_FOUNDONE;
k = 0;
//set the next iteration of the loop to process the greater-than partition
pp_start = pp_equal_end;
p_middle = *pp_greater_middle;
p_end = p_greater_end;
num_total = num_greater;
break;
case LOOPSTATE_FOUNDONE:
return arithmetic_mean<T,U>( val_found, p_equal->data );
}
}
//else both possible median values must be in the greater-than partition
else
{
k = k - num_less - num_equal;
//set the next iteration of the loop to process the greater-than partition
pp_start = pp_equal_end;
p_middle = *pp_greater_middle;
p_end = p_greater_end;
num_total = num_greater;
}
}
}
// NOTE:
// The following code is not part of the algorithm, but is only intended to test the algorithm
// This simple class is designed to contain a singly-linked list
template <typename T>
class List
{
public:
List() : first( nullptr ) {}
// the following is required to abide by the rule of three/five/zero
// see: https://en.cppreference.com/w/cpp/language/rule_of_three
List( const List<T> & ) = delete;
List( const List<T> && ) = delete;
List<T>& operator=( List<T> & ) = delete;
List<T>& operator=( List<T> && ) = delete;
~List()
{
Node<T> *p = first;
while ( p != nullptr )
{
Node<T> *temp = p;
p = p->next;
delete temp;
}
}
void push_front( int data )
{
Node<T> *temp = new Node<T>;
temp->data = data;
temp->next = first;
first = temp;
}
//member variables
Node<T> *first;
};
int main()
{
//generated random numbers will be between 0 and 2 billion (fits in 32-bit signed int)
constexpr int min_val = 0;
constexpr int max_val = 2*1000*1000*1000;
//will allocate array for 1 million ints and fill with random numbers
constexpr int num_values = 1*1000*1000;
//this class contains the singly-linked list and is empty for now
List<int> l;
double result;
//These variables are used for random number generation
std::random_device rd;
std::mt19937 gen( rd() );
std::uniform_int_distribution<> dis( min_val, max_val );
try
{
//fill array with random data
std::cout << "Filling array with random data..." << std::flush;
auto unsorted_data = std::make_unique<int[]>( num_values );
for ( int i = 0; i < num_values; i++ ) unsorted_data[i] = dis( gen );
//fill the singly-linked list
std::cout << "done\nFilling linked list..." << std::flush;
for ( int i = 0; i < num_values; i++ ) l.push_front( unsorted_data[i] );
std::cout << "done\nCalculating median using STL function..." << std::flush;
//calculate the median using the functions provided by the C++ standard template library.
//Note: this is only done to compare the results with the algorithm provided in this file
if ( num_values % 2 == 0 )
{
int median1, median2;
std::nth_element( &unsorted_data[0], &unsorted_data[(num_values - 1) / 2], &unsorted_data[num_values] );
median1 = unsorted_data[(num_values - 1) / 2];
std::nth_element( &unsorted_data[0], &unsorted_data[(num_values - 0) / 2], &unsorted_data[num_values] );
median2 = unsorted_data[(num_values - 0) / 2];
result = arithmetic_mean<int,double>( median1, median2 );
}
else
{
int median;
std::nth_element( &unsorted_data[0], &unsorted_data[(num_values - 0) / 2], &unsorted_data[num_values] );
median = unsorted_data[(num_values - 0) / 2];
result = static_cast<int>(median);
}
std::cout << "done\nMedian according to STL function: " << std::setprecision( 12 ) << result << std::endl;
// NOTE: Since the STL functions only sorted the array, but not the linked list, the
// order of the linked list is still random and not pre-sorted.
//calculate the median using the algorithm provided in this file
std::cout << "Starting algorithm" << std::endl;
result = find_median<int,double>( l.first );
std::cout << "The calculated median is: " << std::setprecision( 12 ) << result << std::endl;
std::cout << "Cleaning up\n\n" << std::flush;
}
catch ( std::bad_alloc )
{
std::cerr << "Error: Unable to allocate sufficient memory!" << std::endl;
return -1;
}
return 0;
}
Я успешно проверил свой код с одним миллионом случайно сгенерированных элементов, и он нашел правильную медиану практически мгновенно.