Я разрабатываю код для DSP в реальном времени, и мне нужны отзывы экспертов о части кода, в которой используется метод, упомянутый в «Ответе 3 на сообщение Обратный квадрат для фиксированной точки » для реализации 1 / sqrt (uint).
Код разрабатывается для DSP TMS320C6455. Таким образом, используются встроенные функции c64x +. В комментариях объясняется каждый тип c.
У меня есть два массива (A (I + jQ) и B (I + jQ)), каждый из которых содержит более 10 элементов 32-битных мнимых чисел с Q15 -Q15 формат в старших и младших 16 битах, соответственно. Я хочу вычислить сумму (AxB *) / ABS [сумма (AxB *)] для элементов с 1 по 10 (элемент 0 не используется).
Код умножает сопряжение B (от 1 до 10) на (От 1 до 10) выборка за выборкой и суммирование их для получения двух 32-битных значений I и Q. Затем 16MSB I и Q используются для вычисления I ^ 2 + Q ^ 2. Наконец, используя метод, упомянутый в «Ответе 3 выше», он вычисляет параметр CRot как IQ / abs (IQ). Это выполняется путем вычисления 1 / SQRT (I ^ 2 + Q ^ 2) с использованием функции Fxisqrt () с последующим умножением результата на IQ. Вот мой код, и я хотел бы получить отзывы экспертов по нему. Главное, что меня беспокоит по поводу этого кода, это сохранение точности; Я не уверен, является ли правильным использование 16MSB в конце каждого умножения Q15 * Q15! Я был бы признателен, если бы специалисты по программированию с фиксированной запятой могли помочь мне сделать это правильно.
void ProcessCRot (const unsigned int *restrict A, const unsigned int *restrict B,
unsigned int *restrict CRot)
/* -----------------------------------------------------------------------
Tricks: The following c64x+ intrinsics are used:
_mpyh() and _mpy() conduct hi-hi and lo-lo 16-bit multiplications, respectively;
_mpylh() and _mpyhl() conduct lo-hi and hi-lo 16-bit multiplications,
respectively;
_packh2() packs 16MSB of (a and b) to (hi and lo) 16-bits of output, respectively;
_mpyhsu(int a, uint b) calculates 16MSB of int a times 16MSB of uint b;
Timing:
Takes 286 ns for CPU clock 1 GHz.
----------------------------------------------------------------------- */
{
unsigned int v, m, CRotI, CRotQ, InvMag, SqrMag;
int I = 0;
int Q = 0;
int i;
/* --- Multiply A(i) by conjugate of B(i) and sum the result into IQ */
for (i= 0; i < 10; i++) {
/* ----- Read the complex sample ----- */
v = _amem4_const (++A); /* start from sample 1 not 0 */
m = _amem4_const (++B); /* start from sample 1 not 0 */
I += _mpyh(v,m) + _mpy(v,m); /* I1.I2 + Q1.Q2 */
Q += _mpylh(v,m) - _mpyhl(v,m); /* I2.Q1 - I1.Q2 */
}
SqrMag = _mpyh(I,I) + _mpyh(Q,Q); /* I^2 + Q^2 */
Fxisqrt (SqrMag,&InvMag);
CRotI = _mpyhsu (I,InvMag); /* (16MSB int I)*(16MSB uint InvMag) */
CRotQ = _mpyhsu (Q,InvMag); /* (16MSB int Q)*(16MSB uint InvMag) */
/* pack 16MSB of CRotI and CRotQ into 16-hi & 16-lo of CRot, respectively */
_amem4(CRot) = _packh2 (CRotI,CRotQ);
}
void Fxisqrt (unsigned int a, unsigned int *restrict InvSqrt)
/* -------------------------------------------------------------------------
The function Fxisqrt(a,InvSqrt) below implements 1/sqrt(a).
The code uses a helper look-up table gLUT[]. Also intrinsic
_hill(_mpy32u()) is used that returns the 32 MSBs of a full 64-bit
product of two unsigned 32-bit integers.
------------------------------------------------------------------------- */
{
unsigned int s, t, scal, r;
unsigned int gLUT [96] = {
0xfa0bdefa, 0xee6af6ee, 0xe5effae5, 0xdaf27ad9,
0xd2eff6d0, 0xc890aec4, 0xc10366bb, 0xb9a71ab2,
0xb4da2eac, 0xadce7ea3, 0xa6f2b29a, 0xa279a694,
0x9beb568b, 0x97a5c685, 0x9163027c, 0x8d4fd276,
0x89501e70, 0x8563da6a, 0x818ac664, 0x7dc4fe5e,
0x7a122258, 0x7671be52, 0x72e44a4c, 0x6f68fa46,
0x6db22a43, 0x6a52623d, 0x67041a37, 0x65639634,
0x622ffe2e, 0x609cba2b, 0x5d837e25, 0x5bfcfe22,
0x58fd461c, 0x57838619, 0x560e1216, 0x53300a10,
0x51c72e0d, 0x50621a0a, 0x4da48204, 0x4c4c2e01,
0x4af789fe, 0x49a689fb, 0x485a11f8, 0x4710f9f5,
0x45cc2df2, 0x448b4def, 0x421505e9, 0x40df5de6,
0x3fadc5e3, 0x3e7fe1e0, 0x3d55c9dd, 0x3d55d9dd,
0x3c2f41da, 0x39edd9d4, 0x39edc1d4, 0x38d281d1,
0x37bae1ce, 0x36a6c1cb, 0x3595d5c8, 0x3488f1c5,
0x3488fdc5, 0x337fbdc2, 0x3279ddbf, 0x317749bc,
0x307831b9, 0x307879b9, 0x2f7d01b6, 0x2e84ddb3,
0x2d9005b0, 0x2d9015b0, 0x2c9ec1ad, 0x2bb0a1aa,
0x2bb0f5aa, 0x2ac615a7, 0x29ded1a4, 0x29dec9a4,
0x28fabda1, 0x2819e99e, 0x2819ed9e, 0x273c3d9b,
0x273c359b, 0x2661dd98, 0x258ad195, 0x258af195,
0x24b71192, 0x24b6b192, 0x23e6058f, 0x2318118c,
0x2318718c, 0x224da189, 0x224dd989, 0x21860d86,
0x21862586, 0x20c19183, 0x20c1b183, 0x20001580 };
if ( a == 0 ) {
_amem4 (InvSqrt) = (~a); /* handle special case of zero input */
} else {
/* normalize argument */
r = 32;
if (a >= 65536) { a >>= 16; r -= 16; }
if (a >= 256) { a >>= 8; r -= 8; }
if (a >= 16) { a >>= 4; r -= 4; }
if (a >= 4) { a >>= 2; r -= 2; }
r -= (a - (a & (a >> 1)));
scal = (r & 0xfffffffe);
a = (a << scal);
t = gLUT [(a >> 25) - 32]; /* initial approximation */
r = (t << 22) - _hill(_mpy32u(t,a)); /* first NR iteration */
s = _hill(_mpy32u(r,a)); /* second NR iteration */
s = 0x30000000 - _hill(_mpy32u(r,s));/* return 32-MSB of a 64-bit value */
r = _hill(_mpy32u(r,s));
/* denormalize and round result to Q0.31 */
_amem4 (InvSqrt) = (unsigned int) (((r >> (18 - (scal >> 1)) ) + 1) >> 1);
}
}