Искра - CSV - Nullable false НЕ выбрасывает исключение - PullRequest
3 голосов
/ 13 апреля 2020

Смущен, почему Spark НЕ выдает исключение, в то время как схема определяется с нулевым значением fase. Вот мой пример

val testCSVPath = "src/main/resources/data/test.csv"   

    val testSchema = StructType(
      Array(
        StructField("name", StringType, false),
        StructField("age", IntegerType, false)))

    val testDFWithSchema =
      sparkSession
        .read
        .format("csv")
        .schema(testSchema)
        .option("header", "true")
        .load(testCSVPath)

    testDFWithSchema.show()

Ввод файла CSV

name,age
"a",1
"b",2
null,3
"c",4
"",5

Значение столбца имени файла CSV пусто. но это не исключение. Любая идея Моя искра версия 2.2.2

1 Ответ

3 голосов
/ 13 апреля 2020

AFAIK Это не поведение в spark-csv.

, поскольку вы ожидаете нулевую проверку, как в этом примере.

  val schema = List(
    StructField("name", StringType, false),
    StructField("age", IntegerType, true)
  )

  val data = Seq(
    Row("Hadoop Learner", null),
    Row(null, 21)
  )

  val df = spark.createDataFrame(
    spark.sparkContext.parallelize(data),
    StructType(schema)
 ).show

В вашей переменной data вторая строка null и даст RuntimeException assertnotnull ... как показано ниже ...

java.lang.RuntimeException: Error while encoding: java.lang.RuntimeException: The 0th field 'name' of input row cannot be null.
staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true]), 0, name), StringType), true, false) AS name#27
if (assertnotnull(input[0, org.apache.spark.sql.Row, true]).isNullAt) null else validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true]), 1, age), IntegerType) AS age#28
    at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.toRow(ExpressionEncoder.scala:292)
    at org.apache.spark.sql.SparkSession$$anonfun$4.apply(SparkSession.scala:593)
    at org.apache.spark.sql.SparkSession$$anonfun$4.apply(SparkSession.scala:593)
    at scala.collection.Iterator$$anon$11.next(Iterator.scala:410)
    at scala.collection.Iterator$$anon$11.next(Iterator.scala:410)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
    at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
    at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$13$$anon$1.hasNext(WholeStageCodegenExec.scala:636)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:255)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:247)
    at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:858)
    at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:858)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
    at org.apache.spark.scheduler.Task.run(Task.scala:123)
    at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
    at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.RuntimeException: The 0th field 'name' of input row cannot be null.
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.StaticInvoke_0$(Unknown Source)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown Source)
    at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.toRow(ExpressionEncoder.scala:289)
    ... 25 more
[2020-04-13 00:20:18,012] WARN Lost task 0.0 in stage 3.0 (TID 3, localhost, executor driver): java.lang.RuntimeException: Error while encoding: java.lang.RuntimeException: The 0th field 'name' of input row cannot be null.
staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true]), 0, name), StringType), true, false) AS name#27
if (assertnotnull(input[0, org.apache.spark.sql.Row, true]).isNullAt) null else validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true]), 1, age), IntegerType) AS age#28
    at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.toRow(ExpressionEncoder.scala:292)
    at org.apache.spark.sql.SparkSession$$anonfun$4.apply(SparkSession.scala:593)
    at org.apache.spark.sql.SparkSession$$anonfun$4.apply(SparkSession.scala:593)
    at scala.collection.Iterator$$anon$11.next(Iterator.scala:410)
    at scala.collection.Iterator$$anon$11.next(Iterator.scala:410)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
    at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
    at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$13$$anon$1.hasNext(WholeStageCodegenExec.scala:636)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:255)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:247)
    at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:858)
    at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:858)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
    at org.apache.spark.scheduler.Task.run(Task.scala:123)
    at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
    at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.RuntimeException: The 0th field 'name' of input row cannot be null.
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.StaticInvoke_0$(Unknown Source)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown Source)
    at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.toRow(ExpressionEncoder.scala:289)
    ... 25 more
 (org.apache.spark.scheduler.TaskSetManager:66)
[2020-04-13 00:20:18,013] ERROR Task 0 in stage 3.0 failed 1 times; aborting job (org.apache.spark.scheduler.TaskSetManager:70)
Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 3.0 failed 1 times, most recent failure: Lost task 0.0 in stage 3.0 (TID 3, localhost, executor driver): java.lang.RuntimeException: Error while encoding: java.lang.RuntimeException: The 0th field 'name' of input row cannot be null.
staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true]), 0, name), StringType), true, false) AS name#27
if (assertnotnull(input[0, org.apache.spark.sql.Row, true]).isNullAt) null else validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true]), 1, age), IntegerType) AS age#28
    at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.toRow(ExpressionEncoder.scala:292)
    at org.apache.spark.sql.SparkSession$$anonfun$4.apply(SparkSession.scala:593)
    at org.apache.spark.sql.SparkSession$$anonfun$4.apply(SparkSession.scala:593)
    at scala.collection.Iterator$$anon$11.next(Iterator.scala:410)
    at scala.collection.Iterator$$anon$11.next(Iterator.scala:410)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
    at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
    at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$13$$anon$1.hasNext(WholeStageCodegenExec.scala:636)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:255)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:247)
    at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:858)
    at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:858)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
    at org.apache.spark.scheduler.Task.run(Task.scala:123)
    at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
    at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.RuntimeException: The 0th field 'name' of input row cannot be null.
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.StaticInvoke_0$(Unknown Source)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown Source)
    at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.toRow(ExpressionEncoder.scala:289)
    ... 25 more

Driver stacktrace:
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1891)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1879)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1878)
    at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1878)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:927)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:927)
    at scala.Option.foreach(Option.scala:257)
    at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:927)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2112)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2061)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2050)
    at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:738)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2101)
    at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:365)
    at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
    at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:3389)
    at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2550)
    at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2550)
    at org.apache.spark.sql.Dataset$$anonfun$52.apply(Dataset.scala:3370)
    at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:80)
    at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:127)
    at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:75)
    at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3369)
    at org.apache.spark.sql.Dataset.head(Dataset.scala:2550)
    at org.apache.spark.sql.Dataset.take(Dataset.scala:2764)
    at org.apache.spark.sql.Dataset.getRows(Dataset.scala:254)
    at org.apache.spark.sql.Dataset.showString(Dataset.scala:291)
    at org.apache.spark.sql.Dataset.show(Dataset.scala:751)
    at org.apache.spark.sql.Dataset.show(Dataset.scala:710)
    at org.apache.spark.sql.Dataset.show(Dataset.scala:719)
    at examples.CSVTestNPE$.delayedEndpoint$examples$CSVTestNPE$1(CSVTestNPE.scala:58)
    at examples.CSVTestNPE$delayedInit$body.apply(CSVTestNPE.scala:8)
    at scala.Function0$class.apply$mcV$sp(Function0.scala:34)
    at scala.runtime.AbstractFunction0.apply$mcV$sp(AbstractFunction0.scala:12)
    at scala.App$$anonfun$main$1.apply(App.scala:76)
    at scala.App$$anonfun$main$1.apply(App.scala:76)
    at scala.collection.immutable.List.foreach(List.scala:392)
    at scala.collection.generic.TraversableForwarder$class.foreach(TraversableForwarder.scala:35)
    at scala.App$class.main(App.scala:76)
    at examples.CSVTestNPE$.main(CSVTestNPE.scala:8)
    at examples.CSVTestNPE.main(CSVTestNPE.scala)
Caused by: java.lang.RuntimeException: Error while encoding: java.lang.RuntimeException: The 0th field 'name' of input row cannot be null.
staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true]), 0, name), StringType), true, false) AS name#27
if (assertnotnull(input[0, org.apache.spark.sql.Row, true]).isNullAt) null else validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true]), 1, age), IntegerType) AS age#28
    at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.toRow(ExpressionEncoder.scala:292)
    at org.apache.spark.sql.SparkSession$$anonfun$4.apply(SparkSession.scala:593)
    at org.apache.spark.sql.SparkSession$$anonfun$4.apply(SparkSession.scala:593)
    at scala.collection.Iterator$$anon$11.next(Iterator.scala:410)
    at scala.collection.Iterator$$anon$11.next(Iterator.scala:410)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
    at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
    at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$13$$anon$1.hasNext(WholeStageCodegenExec.scala:636)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:255)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:247)
    at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:858)
    at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:858)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
    at org.apache.spark.scheduler.Task.run(Task.scala:123)
    at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
    at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.RuntimeException: The 0th field 'name' of input row cannot be null.
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.StaticInvoke_0$(Unknown Source)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown Source)
    at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.toRow(ExpressionEncoder.scala:289)
    ... 25 more

Но в вашем примере:

  val testSchema = StructType(
    Array(
      StructField("name", StringType, false),
      StructField("age", IntegerType, false)))

  val testDFWithSchema =
    spark
      .read
      .format("csv")
      .schema(testSchema)
      .option("header", "true")
 // .option("inferSchema","true")
    .load("./csvsample")
  testDFWithSchema.printSchema()
  testDFWithSchema.show

выведет

root
 |-- name: string (nullable = true)
 |-- age: integer (nullable = true)

+----+---+
|name|age|
+----+---+
|   a|  1|
|   b|  2|
|null|  3|
|   c|  4|
|null|  5|
+----+---+

если вы наблюдаете схему, поскольку строка дерева говорит, что nullable = true, даже если вы установили ее как false.

Вывод:

Я пришел к вывод, что API-интерфейс spark-csv не поддерживает на уровне источника данных нулевые ограничения

Дополнительные сведения Обнуляемые поля схемы данных Spark

...