В моем коде я загрузил набор данных, затем я создал свои переменные и фрейм данных, а затем создал свою модель для тестирования. Во время обучения моей модели я получаю эту ошибку, я не знаю почему.
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/data/util/structure.py in normalize_element(element)
92 try:
---> 93 spec = type_spec_from_value(t, use_fallback=False)
94 except TypeError:
16 frames
TypeError: Could not build a TypeSpec for 196 14
2463 248
731 314
1147 161
1972 125
...
763 318
835 32
1653 28
2607 165
2732 198
Name: Adult_Mortality, Length: 2645, dtype: object with type Series
During handling of the above exception, another exception occurred:
TypeError Traceback (most recent call last)
tensorflow/python/framework/fast_tensor_util.pyx in tensorflow.python.framework.fast_tensor_util.AppendObjectArrayToTensorProto()
/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/util/compat.py in as_bytes(bytes_or_text, encoding)
85 else:
86 raise TypeError('Expected binary or unicode string, got %r' %
---> 87 (bytes_or_text,))
88
89
TypeError: Expected binary or unicode string, got 14.0
Мой код очень прост, и я написал код в Google Collaboratory:
%tensorflow_version 2.x
from __future__ import absolute_import, division, print_function, unicode_literals
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from IPython.display import clear_output
from six.moves import urllib
from sklearn.model_selection import train_test_split
import tensorflow.compat.v2.feature_column as fc
import tensorflow as tf
df = pd.read_csv('heal.csv', low_memory=False)
dftrain, dfeval = train_test_split(df, test_size = 0.1, random_state = 0)
dftrain.fillna('0', inplace=True)
y_train = dftrain.pop('Life_expectancy')
y_eval = dfeval.pop('Life_expectancy')
print(y_train)
dftrain.head()
dfeval.shape
CATEGORICAL_COLUMNS = ['Country']
NUMERIC_COLUMNS = ['Year', 'Status', 'Adult_Mortality', 'Infant_Deaths', 'Alcohol',
'Percentage_Expenditure', 'Hepatitis_B', 'Measles', 'BMI',
'Under_five_deaths', 'Polio', 'Total_expenditure', 'Diphtheria',
'HIV/AIDS', 'GDP', 'Population', 'thinnes_1-19_years', 'thinness_5-9_years',
'Income_composition_of_resources', 'Schooling']
feature_columns = []
for feature_name in CATEGORICAL_COLUMNS:
vocabulary = dftrain[feature_name].unique() # gets a list of all unique values from given feature column
feature_columns.append(tf.feature_column.categorical_column_with_vocabulary_list(feature_name, vocabulary))
for feature_name in NUMERIC_COLUMNS:
feature_columns.append(tf.feature_column.numeric_column(feature_name, dtype=tf.float32))
print(feature_columns)
def make_input_fn(data_df, label_df, num_epochs=15, shuffle=True, batch_size=32):
def input_function(): # inner function, this will be returned
ds = tf.data.Dataset.from_tensor_slices((dict(data_df), label_df)) # create tf.data.Dataset object with data and its label
if shuffle:
ds = ds.shuffle(1000) # randomize order of data
ds = ds.batch(batch_size).repeat(num_epochs) # split dataset into batches of 32 and repeat process for number of epochs
return ds # return a batch of the dataset
return input_function # return a function object for use
train_input_fn = make_input_fn(dftrain, y_train) # here we will call the input_function that was returned to us to get a dataset object we can feed to the model
eval_input_fn = make_input_fn(dfeval, y_eval, num_epochs=1, shuffle=False)
linear_est = tf.estimator.LinearClassifier(feature_columns=feature_columns)
linear_est.train(train_input_fn) # train
result = linear_est.evaluate(eval_input_fn) # get model metrics/stats by testing on tetsing data
clear_output() # clears console output
print(result['accuracy']) # the result variable is simply a dict of stats about our model
print(result)
Любая помощь будет очень заметна. Пожалуйста, если вы сможете описать проблему, было бы здорово.