В этом примере я использовал https://github.com/bokeh/bokeh/blob/master/bokeh/sampledata/_data/auto-mpg.csv
Спарк по умолчанию ставит ранг впереди, поэтому имена столбцов «инвертированы» по сравнению с тем, что вы указали, но это делается в всего несколько шагов. Ключ в том, что exprs
должен быть создан динамически, и что agg
требует, чтобы это было разделено на голову и хвост (вот почему есть .agg(exprs(0), exprs.slice(1, exprs.length)
ниже)
scala> df2.columns
res39: Array[String] = Array(mpg, cyl, displ, hp, weight, accel, yr, origin, name, Rank)
// note here, you would use columns.slice with the indices for
// the columns you need, i.e. (1, 7)
val exprs = for (col <- df2.columns.slice(0, 8)) yield expr(s"first(${col}) as ${col}")
exprs: Array[org.apache.spark.sql.Column] = Array(first(mpg, false) AS `mpg`, first(cyl, false) AS `cyl`, first(displ, false) AS `displ`, first(hp, false) AS `hp`, first(weight, false) AS `weight`, first(accel, false) AS `accel`, first(yr, false) AS `yr`, first(origin, false) AS `origin`)
scala> val resultDF = df2.groupBy("name").pivot("Rank").agg(exprs(0), exprs.slice(1, exprs.length):_*)
scala> resultDF.columns
res40: Array[String] = Array(name, 1_mpg, 1_cyl, 1_displ, 1_hp, 1_weight, 1_accel, 1_yr, 1_origin, 2_mpg, 2_cyl, 2_displ, 2_hp, 2_weight, 2_accel, 2_yr, 2_origin, 3_mpg, 3_cyl, 3_displ, 3_hp, 3_weight, 3_accel, 3_yr, 3_origin, 4_mpg, 4_cyl, 4_displ, 4_hp, 4_weight, 4_accel, 4_yr, 4_origin, 5_mpg, 5_cyl, 5_displ, 5_hp, 5_weight, 5_accel, 5_yr, 5_origin, 6_mpg, 6_cyl, 6_displ, 6_hp, 6_weight, 6_accel, 6_yr, 6_origin, 7_mpg, 7_cyl, 7_displ, 7_hp, 7_weight, 7_accel, 7_yr, 7_origin, 8_mpg, 8_cyl, 8_displ, 8_hp, 8_weight, 8_accel, 8_yr, 8_origin, 9_mpg, 9_cyl, 9_displ, 9_hp, 9_weight, 9_accel, 9_yr, 9_origin, 10_mpg, 10_cyl, 10_displ, 10_hp, 10_weight, 10_accel, 10_yr, 10_origin)