Условный поднабор данных в зависимости от значения в нескольких столбцах - PullRequest
0 голосов
/ 25 февраля 2020

У меня есть следующий набор данных (пример)

idnumber=c(12,12,13,14,14,15,16,17,18,18)
reg = c('FR','FR','DE','US','US','TZ','MK','GR','ES','ES')
code1=c('F56','G76','G56','T78','G78','G76','G64','T65','G79','G56')
code2=c('G56','I89','J83','S46','D78','G56','H89','G56','W34','T89')
df = data.frame(idnumber,reg,code1,code2)

, который дает:


  idnumber reg code1 code2
1   12     FR   F56   G56
2   12     FR   G76   I89
3   13     DE   G56   J83
4   14     US   T78   S46
5   14     US   G78   D78
6   15     TZ   G76   G56
7   16     MK   G64   H89
8   17     GR   T65   G56
9   18     ES   G79   W34
10  18     ES   G56   T89

Я хотел бы подмножество df, сохраняя только r aws, где значение G56 появляется в столбце code1 или code 2, но с сохранением необработанного idnumber, если значение идентификатора совпадает со значением идентификатора, совпадающим со значением G56, например:


  idnumber reg code1 code2
1   12     FR   F56   G56
2   12     FR   G76   I89
3   13     DE   G56   J83
6   15     TZ   G76   G56
8   17     GR   T65   G56
9   18     ES   G79   W34
10  18     ES   G56   T89

I миллионы наблюдений и около 30 code столбцов. Надеюсь, что вопрос достаточно ясен, любое предложение будет приветствоваться!

Приветствия

Ответы [ 4 ]

1 голос
/ 25 февраля 2020

Другое базовое решение R

subset(df,`class<-`(ave(cbind(as.character(code1),as.character(code2)),
                      idnumber,
                      FUN = function(v) ifelse("G56"%in%v,TRUE,FALSE)),"logical")[,1])

такое, что

   idnumber reg code1 code2
1        12  FR   F56   G56
2        12  FR   G76   I89
3        13  DE   G56   J83
6        15  TZ   G76   G56
8        17  GR   T65   G56
9        18  ES   G79   W34
10       18  ES   G56   T89
1 голос
/ 25 февраля 2020

1. база

subset(df, idnumber %in% idnumber[code1=="G56" | code2=="G56"])

2. dplyr

library(dplyr)

df %>% filter(idnumber %in% idnumber[code1=="G56" | code2=="G56"])

Выход

#   idnumber reg code1 code2
# 1       12  FR   F56   G56
# 2       12  FR   G76   I89
# 3       13  DE   G56   J83
# 4       15  TZ   G76   G56
# 5       17  GR   T65   G56
# 6       18  ES   G79   W34
# 7       18  ES   G56   T89
1 голос
/ 25 февраля 2020

Вот способ сделать:

library(data.table)
setDT(df)
df[,.SD[any(code1 == 'G56' | code2 == 'G56')] ,.(idnumber)]

   idnumber reg code1 code2
1:       12  FR   F56   G56
2:       12  FR   G76   I89
3:       13  DE   G56   J83
4:       15  TZ   G76   G56
5:       17  GR   T65   G56
6:       18  ES   G79   W34
7:       18  ES   G56   T89
0 голосов
/ 25 февраля 2020
library(dplyr)
df %>%
  semi_join(df %>%
  filter(code1=="G56" | code2=="G56"),by="idnumber")

  idnumber reg code1 code2
1       12  FR   F56   G56
2       12  FR   G76   I89
3       13  DE   G56   J83
4       15  TZ   G76   G56
5       17  GR   T65   G56
6       18  ES   G79   W34
7       18  ES   G56   T89

Редактировать : это может быть проще с 30 столбцами кода:

df %>%
  semi_join(df %>%
              pivot_longer(cols=-c(idnumber, reg)) %>%
              filter(value=="G56") %>%
              pivot_wider(id_cols=c(idnumber, reg)),
            by="idnumber")

Третий выбор:

df %>%
  semi_join(df %>%
              filter_at(vars(starts_with("code")), any_vars(. == "G56")),
            by="idnumber")

Редактировать : OP теперь хочет фильтровать записи, если "G56" появляется хотя бы два раза в столбцах "код" (см. Комментарий ниже)

df %>%
  semi_join(df %>%
  mutate(n=rowSums(.[grep("code", names(.))] =="G56")) %>%
  group_by(idnumber) %>%
  filter(sum(n)>1),
  by="idnumber")

  idnumber reg code1 code2 code3
1       12  FR   F56   G56   M56
2       12  FR   G76   I89   G56
3       18  ES   G79   W34   W33
4       18  ES   G56   G56   T89

Данные:

idnumber=c(12,12,13,14,14,15,16,17,18,18)
reg = c('FR','FR','DE','US','US','TZ','MK','GR','ES','ES')
code1=c('F56','G76','G56','T78','G78','G76','G64','T65','G79','G56')
code2=c('G56','I89','J83','S46','D78','G56','H89','G56','W34','G56')
code3=c('M56','G56','J83','S46','D78','G46','H89','J56','W33','T89')
df = data.frame(idnumber,reg,code1,code2,code3)
...