Как вы правильно заметили, разделение данных на 3 сгиба невозможно в одной строке кода с использованием Keras ImageDataGenerator
.
Обходным путем будет сохранение изображений, соответствующих Test Data
, в отдельной папке и применение ImageDataGenerator
, как показано ниже:
# Path to Training Directory
train_dir = 'Dogs_Vs_Cats_Small/train'
# Path to Test Directory
test_dir = 'Dogs_Vs_Cats_Small/test'
Train_Gen = ImageDataGenerator(1./255)
Test_Gen = ImageDataGenerator(1./255)
Train_Generator = Train_Gen.flow_from_directory(train_dir, target_size = (150,150), batch_size = 20, class_mode = 'binary')
Test_Generator = Test_Gen.flow_from_directory(test_dir, target_size = (150, 150), class_mode = 'binary', batch_size = 20)
Пример кода для извлечения некоторых изображений из Исходный каталог и поместите их в две отдельные папки, train
и test
, которые могут вам помочь, показаны ниже:
import os, shutil
# Path to the directory where the original dataset was uncompressed
original_dataset_dir = 'Dogs_Vs_Cats'
# Directory where you’ll store your smaller dataset
base_dir = 'Dogs_Vs_Cats_Small2'
os.mkdir(base_dir)
# Directory for the training splits
train_dir = os.path.join(base_dir, 'train')
os.mkdir(train_dir)
# Directory for the test splits
test_dir = os.path.join(base_dir, 'test')
os.mkdir(test_dir)
# Directory with training cat pictures
train_cats_dir = os.path.join(train_dir, 'cats')
os.mkdir(train_cats_dir)
# Directory with training dog pictures
train_dogs_dir = os.path.join(train_dir, 'dogs')
os.mkdir(train_dogs_dir)
# Directory with Test Cat Pictures
test_cats_dir = os.path.join(test_dir, 'cats')
os.mkdir(test_cats_dir)
# Directory with Test Dog Pictures
test_dogs_dir = os.path.join(test_dir, 'dogs')
os.mkdir(test_dogs_dir)
# Copies the first 1,000 cat images to train_cats_dir.
fnames = ['cat.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
src = os.path.join(original_dataset_dir, 'train', fname)
dst = os.path.join(train_cats_dir, fname)
shutil.copyfile(src, dst)
# Copies the next 500 cat images to test_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1500, 2000)]
for fname in fnames:
src = os.path.join(original_dataset_dir, 'train', fname)
dst = os.path.join(test_cats_dir, fname)
shutil.copyfile(src, dst)
# Copies the first 1,000 dog images to train_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
src = os.path.join(original_dataset_dir, 'train', fname)
dst = os.path.join(train_dogs_dir, fname)
shutil.copyfile(src, dst)
# Copies the next 500 dog images to test_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1500, 2000)]
for fname in fnames:
src = os.path.join(original_dataset_dir, 'train', fname)
dst = os.path.join(test_dogs_dir, fname)
shutil.copyfile(src, dst)
# Sanity Check to ensure that Training, Validation and Test Folders have the expected number of images
print('Number of Cat Images in Training Directory is {}'.format(len(os.listdir(train_cats_dir))))
print('Number of Dog Images in Training Directory is {}'.format(len(os.listdir(train_dogs_dir))))
print('Number of Cat Images in Testing Directory is {}'.format(len(os.listdir(test_cats_dir))))
print('Number of Dog Images in Testing Directory is {}'.format(len(os.listdir(test_dogs_dir))))
Надеюсь, это поможет.