Многослойный граф в сетиx - PullRequest
1 голос
/ 25 февраля 2020

Я хочу создать многослойный график (как на прикрепленном изображении), соединив два графика, написанных с помощью следующего кода, используя networkx

#Graph1
g1 = nx.read_edgelist('sample.txt', nodetype=str)
pos = nx.shell_layout(g)
plt.figure(figsize=(10, 10))
nx.draw_networkx_edges(g, pos, edge_color='khaki', alpha=1)
nx.draw_networkx_nodes(g,pos,node_color='r',alpha=0.5,node_size=1000)
nx.draw_networkx_labels(g, pos, font_size=10,font_family='IPAexGothic')
plt.axis('off')

#Graph2
g2 = nx.read_edgelist('sample2.txt', nodetype=str)
pos = nx.shell_layout(g)
plt.figure(figsize=(10, 10))
nx.draw_networkx_edges(g, pos, edge_color='khaki', alpha=1)
nx.draw_networkx_nodes(g,pos,node_color='r',alpha=0.5,node_size=1000)
nx.draw_networkx_labels(g, pos, font_size=10,font_family='IPAexGothic')
plt.axis('off')

введите описание изображения здесь

введите описание изображения здесь

enter image description here

1 Ответ

3 голосов
/ 26 февраля 2020

В networkx нет функциональности, которая в настоящее время поддерживает многоуровневую компоновку, тем более визуализацию, как показано. Таким образом, мы должны свернуть свои собственные.

Следующая реализация LayeredNetworkGraph предполагает, что у вас есть список графиков [g1, g2, ..., gn], которые представляют разные слои. Внутри слоя соответствующий (под) граф определяет связность. Между слоями узлы в последующих слоях соединяются, если они имеют одинаковый идентификатор узла.

Поскольку отсутствуют функции компоновки (AFAIK), которые вычисляли бы положения узлов в трех измерениях с ограничением плоскостности, наложенным на узлы в слое, мы используем небольшой хак: мы создаем композицию графа для всех слоев, вычисляем позиции в двух измерениях, а затем применить эти позиции к узлам во всех слоях. Можно рассчитать истинную сило-ориентированную компоновку с ограничениями плоскостности, но это было бы большой работой, и, поскольку в вашем примере использовалась только компоновка оболочки (которая не пострадала бы), я не потрудился. Различия будут небольшими во многих случаях.

Если вы хотите изменить аспекты визуализации (размеры, ширину, цвета), взгляните на метод draw. Большинство изменений, которые могут вам потребоваться, возможно, будут сделаны там.

Plot of multi-layered network

#!/usr/bin/env python
"""
Plot multi-graphs in 3D.
"""
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx

from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d.art3d import Line3DCollection


class LayeredNetworkGraph(object):

    def __init__(self, graphs, node_labels=None, layout=nx.spring_layout, ax=None):
        """Given an ordered list of graphs [g1, g2, ..., gn] that represent
        different layers in a multi-layer network, plot the network in
        3D with the different layers separated along the z-axis.

        Within a layer, the corresponding graph defines the connectivity.
        Between layers, nodes in subsequent layers are connected if
        they have the same node ID.

        Arguments:
        ----------
        graphs : list of networkx.Graph objects
            List of graphs, one for each layer.

        node_labels : dict node ID : str label or None (default None)
            Dictionary mapping nodes to labels.
            If None is provided, nodes are not labelled.

        layout_func : function handle (default networkx.spring_layout)
            Function used to compute the layout.

        ax : mpl_toolkits.mplot3d.Axes3d instance or None (default None)
            The axis to plot to. If None is given, a new figure and a new axis are created.

        """

        # book-keeping
        self.graphs = graphs
        self.total_layers = len(graphs)

        self.node_labels = node_labels
        self.layout = layout

        if ax:
            self.ax = ax
        else:
            fig = plt.figure()
            self.ax = fig.add_subplot(111, projection='3d')

        # create internal representation of nodes and edges
        self.get_nodes()
        self.get_edges_within_layers()
        self.get_edges_between_layers()

        # compute layout and plot
        self.get_node_positions()
        self.draw()


    def get_nodes(self):
        """Construct an internal representation of nodes with the format (node ID, layer)."""
        self.nodes = []
        for z, g in enumerate(self.graphs):
            self.nodes.extend([(node, z) for node in g.nodes()])


    def get_edges_within_layers(self):
        """Remap edges in the individual layers to the internal representations of the node IDs."""
        self.edges_within_layers = []
        for z, g in enumerate(self.graphs):
            self.edges_within_layers.extend([((source, z), (target, z)) for source, target in g.edges()])


    def get_edges_between_layers(self):
        """Determine edges between layers. Nodes in subsequent layers are
        thought to be connected if they have the same ID."""
        self.edges_between_layers = []
        for z1, g in enumerate(self.graphs[:-1]):
            z2 = z1 + 1
            h = self.graphs[z2]
            shared_nodes = set(g.nodes()) & set(h.nodes())
            self.edges_between_layers.extend([((node, z1), (node, z2)) for node in shared_nodes])


    def get_node_positions(self, *args, **kwargs):
        """Get the node positions in the layered layout."""
        # What we would like to do, is apply the layout function to a combined, layered network.
        # However, networkx layout functions are not implemented for the multi-dimensional case.
        # Futhermore, even if there was such a layout function, there probably would be no straightforward way to
        # specify the planarity requirement for nodes within a layer.
        # Therefor, we compute the layout for the full network in 2D, and then apply the
        # positions to the nodes in all planes.
        # For a force-directed layout, this will approximately do the right thing.
        # TODO: implement FR in 3D with layer constraints.

        composition = self.graphs[0]
        for h in self.graphs[1:]:
            composition = nx.compose(composition, h)

        pos = self.layout(composition, *args, **kwargs)

        self.node_positions = dict()
        for z, g in enumerate(self.graphs):
            self.node_positions.update({(node, z) : (*pos[node], z) for node in g.nodes()})


    def draw_nodes(self, nodes, *args, **kwargs):
        x, y, z = zip(*[self.node_positions[node] for node in nodes])
        self.ax.scatter(x, y, z, *args, **kwargs)


    def draw_edges(self, edges, *args, **kwargs):
        segments = [(self.node_positions[source], self.node_positions[target]) for source, target in edges]
        line_collection = Line3DCollection(segments, *args, **kwargs)
        self.ax.add_collection3d(line_collection)


    def get_extent(self, pad=0.1):
        xyz = np.array(list(self.node_positions.values()))
        xmin, ymin, _ = np.min(xyz, axis=0)
        xmax, ymax, _ = np.max(xyz, axis=0)
        dx = xmax - xmin
        dy = ymax - ymin
        return (xmin - pad * dx, xmax + pad * dx), \
            (ymin - pad * dy, ymax + pad * dy)


    def draw_plane(self, z, *args, **kwargs):
        (xmin, xmax), (ymin, ymax) = self.get_extent(pad=0.1)
        u = np.linspace(xmin, xmax, 10)
        v = np.linspace(ymin, ymax, 10)
        U, V = np.meshgrid(u ,v)
        W = z * np.ones_like(U)
        self.ax.plot_surface(U, V, W, *args, **kwargs)


    def draw_node_labels(self, node_labels, *args, **kwargs):
        for node, z in self.nodes:
            if node in node_labels:
                ax.text(*self.node_positions[(node, z)], node_labels[node], *args, **kwargs)


    def draw(self):

        self.draw_edges(self.edges_within_layers,  color='k', alpha=0.3, linestyle='-', zorder=2)
        self.draw_edges(self.edges_between_layers, color='k', alpha=0.3, linestyle='--', zorder=2)

        for z in range(self.total_layers):
            self.draw_plane(z, alpha=0.2, zorder=1)
            self.draw_nodes([node for node in self.nodes if node[1]==z], s=300, zorder=3)

        if self.node_labels:
            self.draw_node_labels(self.node_labels,
                                  horizontalalignment='center',
                                  verticalalignment='center',
                                  zorder=100)


if __name__ == '__main__':

    # define graphs
    n = 5
    g = nx.erdos_renyi_graph(4*n, p=0.1)
    h = nx.erdos_renyi_graph(3*n, p=0.2)
    i = nx.erdos_renyi_graph(2*n, p=0.4)

    node_labels = {nn : str(nn) for nn in range(4*n)}

    # initialise figure and plot
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    LayeredNetworkGraph([g, h, i], node_labels=node_labels, ax=ax, layout=nx.spring_layout)
    ax.set_axis_off()
    plt.show()
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...