Я предлагаю найти контур с максимальным количеством дочерних контуров .
Контур с максимальным количеством детей - это контур с максимальным количеством букв внутри. Это.
Это только первая стадия грубой фильтрации, и есть несколько стадий:
- Преобразование в оттенки серого и преобразование в двоичное изображение.
- Поиск контуров и иерархия.
Используйте RETR_TREE
для создания дерева контуров внутри контуров. - Найдите родительский контур с максимальным количеством дочерних контуров.
- Обрежьте ограничивающий прямоугольник вышеуказанного контура из изображение.
- Поиск связанных компонентов (кластеров).
- Удаление больших, маленьких, высоких и широких кластеров - точно не букв.
- Используйте морфологическую операцию «закрытие» для объединения текстовой области. .
- Найдите контуры и обрежьте ограничивающий прямоугольник контура с максимальной площадью.
Проблема сложная, и мой ответ может быть слишком подходящим для размещенного вами изображения.
Вы можете уточнить эвристику для получения более общего решения.
Вот код:
import numpy as np
import cv2
# Read input image
img = cv2.imread('dizziness.jpg')
# Convert to Grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Convert to binary image - use THRESH_OTSU for automatic threshold.
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# Find contours and hierarchy, use RETR_TREE for creating a tree of contours within contours
cnts, hiers = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)[-2:] # [-2:] indexing takes return value before last (due to OpenCV compatibility issues).
# https://docs.opencv.org/master/d9/d8b/tutorial_py_contours_hierarchy.html
# Hierarchy Representation in OpenCV
# So each contour has its own information regarding what hierarchy it is, who is its child, who is its parent etc.
# OpenCV represents it as an array of four values : [Next, Previous, First_Child, Parent]
parent = hiers[0, :, 3]
# Find parent contour with the maximum number of child contours
# Use np.bincount for counting the number of instances of each parent value.
# https://docs.scipy.org/doc/numpy/reference/generated/numpy.bincount.html#numpy.bincount
hist = np.bincount(np.maximum(parent, 0))
max_n_childs_idx = hist.argmax()
# Get the contour with the maximum child contours
c = cnts[max_n_childs_idx]
# Get bounding rectangle
x, y, w, h = cv2.boundingRect(c)
# Crop the bounding rectangle out of img
img = img[y:y+h, x:x+w, :]
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Convert to binary image (after cropping) and invert polarity
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
#cv2.imshow('thresh', thresh);cv2.waitKey(0);cv2.destroyAllWindows()
# Find connected components (clusters)
nlabel,labels,stats,centroids = cv2.connectedComponentsWithStats(thresh, connectivity=8)
# Delete large, small, tall and wide clusters - not letters for sure
max_area = 2000
min_area = 10
max_width = 100
max_height = 100
for i in range(1, nlabel):
if (stats[i, cv2.CC_STAT_AREA] > max_area) or \
(stats[i, cv2.CC_STAT_AREA] < min_area) or \
(stats[i, cv2.CC_STAT_WIDTH] > max_width) or \
(stats[i, cv2.CC_STAT_HEIGHT] > max_height):
thresh[labels == i] = 0
#cv2.imshow('thresh', thresh);cv2.waitKey(0);cv2.destroyAllWindows()
# Use "closing" morphological operation for uniting text area
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, np.ones((50, 50)))
# Find contours once more
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[-2]
# Get contour with maximum area
c = max(cnts, key=cv2.contourArea)
# Get bounding rectangle
x, y, w, h = cv2.boundingRect(c)
# Crop the bounding rectangle out of img (leave some margins)
out = img[y-5:y+h+5, x-5:x+w+5]
# Show output
cv2.imshow('out', out);
cv2.waitKey(0);
cv2.destroyAllWindows()
Результат: