Во-первых, отделите электронную почту от домена, чтобы @thing.com находился в другом столбце.
Далее, похоже, вы описываете алгоритм нечеткого сопоставления, называемый расстоянием Левенштейна. Вы можете использовать модуль, разработанный для этого, или, возможно, написать собственный:
import numpy as np
def levenshtein_ratio_and_distance(s, t, ratio_calc = False):
""" levenshtein_ratio_and_distance:
Calculates levenshtein distance between two strings.
If ratio_calc = True, the function computes the
levenshtein distance ratio of similarity between two strings
For all i and j, distance[i,j] will contain the Levenshtein
distance between the first i characters of s and the
first j characters of t
"""
# Initialize matrix of zeros
rows = len(s)+1
cols = len(t)+1
distance = np.zeros((rows,cols),dtype = int)
# Populate matrix of zeros with the indeces of each character of both strings
for i in range(1, rows):
for k in range(1,cols):
distance[i][0] = i
distance[0][k] = k
# Iterate over the matrix to compute the cost of deletions,insertions and/or substitutions
for col in range(1, cols):
for row in range(1, rows):
if s[row-1] == t[col-1]:
cost = 0 # If the characters are the same in the two strings in a given position [i,j] then the cost is 0
else:
# In order to align the results with those of the Python Levenshtein package, if we choose to calculate the ratio
# the cost of a substitution is 2. If we calculate just distance, then the cost of a substitution is 1.
if ratio_calc == True:
cost = 2
else:
cost = 1
distance[row][col] = min(distance[row-1][col] + 1, # Cost of deletions
distance[row][col-1] + 1, # Cost of insertions
distance[row-1][col-1] + cost) # Cost of substitutions
if ratio_calc == True:
# Computation of the Levenshtein Distance Ratio
Ratio = ((len(s)+len(t)) - distance[row][col]) / (len(s)+len(t))
return Ratio
else:
# print(distance) # Uncomment if you want to see the matrix showing how the algorithm computes the cost of deletions,
# insertions and/or substitutions
# This is the minimum number of edits needed to convert string a to string b
return "The strings are {} edits away".format(distance[row][col])
Теперь вы можете получить числовое значение того, насколько они похожи. Вам все еще нужно будет установить sh обрезание того, какое число приемлемо для вас.
Str1 = "Apple Inc."
Str2 = "apple Inc"
Distance = levenshtein_ratio_and_distance(Str1.lower(),Str2.lower())
print(Distance)
Ratio = levenshtein_ratio_and_distance(Str1.lower(),Str2.lower(),ratio_calc = True)
print(Ratio)
Существуют и другие алгоритмы подобия, кроме Левенштейна. Вы можете попробовать Jaro-Winkler или Trigram.
Я получил этот код от: https://www.datacamp.com/community/tutorials/fuzzy-string-python