Можем ли мы кластеризовать набор многомерных временных рядов в Python - PullRequest
0 голосов
/ 01 мая 2020

У меня есть набор данных со многими значениями финансовых сигналов для разных акций в разное время. Например,

StockName  Date   Signal1  Signal2
----------------------------------
Stock1     1/1/20    a       b
Stock1     1/2/20    c       d
.
.
.
Stock2     1/1/20    e       f
Stock2     1/2/20    g       h
.
.
.

Я хотел бы построить таблицу временных рядов, как показано ниже, и кластерные акции, основанные на сигналах 1 и 1. signal2 (2 переменные)

StockName   1/1/20    1/2/20    ........    Cluster#
----------------------------------------------------
 Stock1     [a,b]      [c,d]                    0
 Stock2     [e,f]      [g,h]                    1
 Stock3     ......     .....                    0
 .
 .
 .

1) Есть ли способы сделать это? (Кластеризация запасов на основе нескольких переменных для данных временных рядов). Я пытался искать в Интернете, но они все о кластеризации временных рядов, основанных на одной переменной.

2) Кроме того, есть ли способы кластеризации разных акций в разное время? (Таким образом, возможно, Stock1 в time1 находится в одном кластере с Stock2 в time3)

1 Ответ

1 голос
/ 03 мая 2020

Я пересматриваю свой ответ здесь, основываясь на новой информации, которую вы в последний раз опубликовали.

from utils import *

import time
import numpy as np

from mxnet import nd, autograd, gluon
from mxnet.gluon import nn, rnn
import mxnet as mx
import datetime
import seaborn as sns
import matplotlib.pyplot as plt

# %matplotlib inline
from sklearn.decomposition import PCA

import math

from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import StandardScaler

import xgboost as xgb
from sklearn.metrics import accuracy_score

import warnings
warnings.filterwarnings("ignore")

context = mx.cpu(); model_ctx=mx.cpu()
mx.random.seed(1719)

# Note: The purpose of this section (3. The Data) is to show the data preprocessing and to give rationale for using different sources of data, hence I will only use a subset of the full data (that is used for training).

def parser(x):
    return datetime.datetime.strptime(x,'%Y-%m-%d')

# dataset_ex_df = pd.read_csv('data/panel_data_close.csv', header=0, parse_dates=[0], date_parser=parser)


import yfinance as yf

# Get the data for the stock AAPL
start = '2018-01-01'
end = '2020-04-22'

data = yf.download('GS', start, end)

data = data.reset_index()
data

enter image description here

    data.dtypes

    # re-name field from 'Adj Close' to 'Adj_Close'
    data = data.rename(columns={"Adj Close": "Adj_Close"})
    data

num_training_days = int(data.shape[0]*.7)
print('Number of training days: {}. Number of test days: {}.'.format(num_training_days, data.shape[0]-num_training_days))



# TECHNICAL INDICATORS
#def get_technical_indicators(dataset):
# Create 7 and 21 days Moving Average
data['ma7'] = data['Adj_Close'].rolling(window=7).mean()
data['ma21'] = data['Adj_Close'].rolling(window=21).mean()


# Create exponential weighted moving average
data['26ema'] = data['Adj_Close'].ewm(span=26).mean()
data['12ema'] = data['Adj_Close'].ewm(span=12).mean()
data['MACD'] = (data['12ema']-data['26ema'])

# Create Bollinger Bands
data['20sd'] = data['Adj_Close'].rolling(window=20).std() 
data['upper_band'] = data['ma21'] + (data['20sd']*2)
data['lower_band'] = data['ma21'] - (data['20sd']*2)

# Create Exponential moving average
data['ema'] = data['Adj_Close'].ewm(com=0.5).mean()

# Create Momentum
data['momentum'] = data['Adj_Close']-1



dataset_TI_df = data
dataset = data


def plot_technical_indicators(dataset, last_days):
    plt.figure(figsize=(16, 10), dpi=100)
    shape_0 = dataset.shape[0]
    xmacd_ = shape_0-last_days

    dataset = dataset.iloc[-last_days:, :]
    x_ = range(3, dataset.shape[0])
    x_ =list(dataset.index)

    # Plot first subplot
    plt.subplot(2, 1, 1)
    plt.plot(dataset['ma7'],label='MA 7', color='g',linestyle='--')
    plt.plot(dataset['Adj_Close'],label='Closing Price', color='b')
    plt.plot(dataset['ma21'],label='MA 21', color='r',linestyle='--')
    plt.plot(dataset['upper_band'],label='Upper Band', color='c')
    plt.plot(dataset['lower_band'],label='Lower Band', color='c')
    plt.fill_between(x_, dataset['lower_band'], dataset['upper_band'], alpha=0.35)
    plt.title('Technical indicators for Goldman Sachs - last {} days.'.format(last_days))
    plt.ylabel('USD')
    plt.legend()

    # Plot second subplot
    plt.subplot(2, 1, 2)
    plt.title('MACD')
    plt.plot(dataset['MACD'],label='MACD', linestyle='-.')
    plt.hlines(15, xmacd_, shape_0, colors='g', linestyles='--')
    plt.hlines(-15, xmacd_, shape_0, colors='g', linestyles='--')
    # plt.plot(dataset['log_momentum'],label='Momentum', color='b',linestyle='-')

    plt.legend()
    plt.show()

plot_technical_indicators(dataset_TI_df, 400)

enter image description here

Это даст вам несколько сигналов для работы. Конечно, эти функции могут быть чем угодно. Я уверен, что вы знаете, что это технический анализ, а не фундаментальный анализ. Теперь вы можете выполнять кластеризацию и все, что захотите, на данный момент.

Вот хорошая ссылка для кластеризации.

https://www.pythonforfinance.net/2018/02/08/stock-clusters-using-k-means-algorithm-in-python/

...