Если имеется несколько столбцов, используйте filter_at
(при условии, что мы удаляем строки, если в каждой строке есть какие-либо NA для каждого из столбцов)
library(dplyr)
flights %>%
filter_at(vars(c("dep_delay", "arr_delay", "distance")),
all_vars(!is.na(.)))
# A tibble: 327,346 x 19
# year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time arr_delay carrier flight tailnum origin dest
# <int> <int> <int> <int> <int> <dbl> <int> <int> <dbl> <chr> <int> <chr> <chr> <chr>
# 1 2013 1 1 517 515 2 830 819 11 UA 1545 N14228 EWR IAH
# 2 2013 1 1 533 529 4 850 830 20 UA 1714 N24211 LGA IAH
# 3 2013 1 1 542 540 2 923 850 33 AA 1141 N619AA JFK MIA
# 4 2013 1 1 544 545 -1 1004 1022 -18 B6 725 N804JB JFK BQN
# 5 2013 1 1 554 600 -6 812 837 -25 DL 461 N668DN LGA ATL
# 6 2013 1 1 554 558 -4 740 728 12 UA 1696 N39463 EWR ORD
# 7 2013 1 1 555 600 -5 913 854 19 B6 507 N516JB EWR FLL
# 8 2013 1 1 557 600 -3 709 723 -14 EV 5708 N829AS LGA IAD
# 9 2013 1 1 557 600 -3 838 846 -8 B6 79 N593JB JFK MCO
#10 2013 1 1 558 600 -2 753 745 8 AA 301 N3ALAA LGA ORD
# … with 327,336 more rows, and 5 more variables: air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
# time_hour <dttm>
В версии devel, мы можем использовать across
с filter
flights %>%
filter(across(c(dep_delay, arr_delay, distance), ~ !is.na(.)))
Если условие состоит в том, чтобы среди этих столбцов был хотя бы один не-NA, замените all_vars
на any_vars
flights %>%
filter_at(vars(c("dep_delay", "arr_delay", "distance")),
any_vars(!is.na(.)))
ПРИМЕЧАНИЕ: шаг group_by
может быть после шага filter
, так как мы используем те же столбцы