Получение AttributError при изучении учебника Tensorflow - PullRequest
1 голос
/ 13 апреля 2020

Я довольно новичок в кодировании, так что терпите меня. Я пытаюсь обучить Tensorflow по сегментации изображений, но не могу запустить код из-за ошибки AttributeError. Это код, который я запускаю:


from tensorflow_examples.models.pix2pix import pix2pix

import tensorflow_datasets as tfds
tfds.disable_progress_bar()

from IPython.display import clear_output
import matplotlib.pyplot as plt

dataset, info = tfds.load('oxford_iiit_pet:3.*.*', with_info=True)

def normalize(input_image, input_mask):
    input_image = tf.cast(input_image, tf.float32) / 255.0
    input_mask -= 1
    return input_image, input_mask

@tf.function
def load_image_train(datapoint):
    input_image = tf.image.resize(datapoint['image'], (128, 128))
    input_mask = tf.image.resize(datapoint['segmentation_mask'], (128, 128))

    if tf.random.uniform(()) > 0.5:
        input_image = tf.image.flip_left_right(input_image)
        input_mask = tf.image.flip_left_right(input_mask)

    input_image, input_mask = normalize(input_image, input_mask)

    return input_image, input_mask

def load_image_test(datapoint):
    input_image = tf.image.resize(datapoint['image'], (128, 128))
    input_mask = tf.image.resize(datapoint['segmentation_mask'], (128, 128))

    input_image, input_mask = normalize(input_image, input_mask)

    return input_image, input_mask

TRAIN_LENGTH = info. splits['train'].num_examples
BATCH_SIZE = 64
BUFFER_SIZE = 1000
STEPS_PER_EPOCH = TRAIN_LENGTH // BATCH_SIZE

train = dataset['train'].map(load_image_train, num_parallel_calls=tf.data.experimental.AUTOTUNE)
test = dataset['test'].map(load_image_test)

train_dataset = train.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat()
train_dataset = train_dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
test_dataset = test.batch(BATCH_SIZE)

def display(display_list):
    plt.figure(figsize=(15, 15))

    title = ['Input Image', 'True Mask', 'Predicted Mask']

    for i in range(len(display_list)):
        plt.subplot(1, len(display_list), i+1)
        plt.title(title[i])
        plt.imshow(tf.keras.preprocessing.image.array_to_img(display_list[i]))
        plt.axis('off')
    plt.show()

for image, mask in train.take(1):
    sample_image, sample_mask = image, mask
display([sample_image, sample_mask])

OUTPUT_CHANNELS = 3

base_model = tf.keras.applications.MobileNetV2(input_shape=[128, 128, 3], include_top=False)

# Use the activations layers
layer_names = [
    'block_1_expand_relu',  # 64x64
    'block_3_expand_relu',  # 32x32
    'block_6_expand_relu',  # 16x16
    'block_13_expand_relu', # 8x8
    'block_16_project', # 4x4
]
layers = [base_model.get_layer(name).output for name in layer_names]

# Create the feature extraction model
down_stack = tf.keras.Model(inputs=base_model.input, outputs=layers)

down_stack.trainable = False

up_stack = [
    pix2pix.upsample(512, 3),   #4x4 -> 8x8
    pix2pix.upsample(256, 3),   #8x8 -> 16x16
    pix2pix.upsample(128, 3),   #16x16 -> 32x32
    pix2pix.upsample(64, 3),    #32x32 -> 64x64
]

def unet_model(output_channels):
    inputs = tf.keras.layers.Input(shape=[128, 128, 3])
    x = inputs

    # Downsampling through the model
    skips = down_stack(x)
    x = skips[-1]
    skips = reversed(skips[:-1])

    # Upsampling and establishing the skip connections
    for up, skip in zip(up_stack, skips):
        x = up(x)
        concat = tf.keras.layers.Concatenate()
        x = concat([x, skip])

    # This is the last layer of the model
    last = tf.keras.layers.Conv2DTranspose(
        output_channels, 3, strides=2,
        padding='same')    #64x64 -> 128x128

    x = last(x)

    return tf.keras.Model(inputs=inputs, outputs=x)

model = unet_model(OUTPUT_CHANNELS)
model.compile(optimizer=['adam'], 
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    metrics=['accuracy'])

tf.keras.utils.plot_model(model, show_shapes=True)

def create_mask(pred_mask):
    pred_mask = tf.argmax(pred_mask, axis=-1)
    pred_mask = pred_mask[..., tf.newaxis]
    return pred_mask[0]

def show_predictions(dataset=None, num=1):
    if dataset:
        for image, mask in dataset.take(num):
            pred_mask = model.predict(image)
            display([image[0], mask[0], create_mask(pred_mask)])
        else:
            display([sample_image, sample_mask,
                    create_mask(model.predict(sample_image[tf.newaxis, ...]))])

show_predictions()

class DisplayCallback(tf.keras.callbacks.Callback):
    def on_epoch_end(self, epoch, logs=None):
        clear_output(wait=True)
        show_predictions()
        print('\nSample Prediction after epoch {}\n'.format(epoch+1))

EPOCHS = 20
VAL_SUBSPLITS = 5
VALIDATION_STEPS = info.splits['test'].num_examples//BATCH_SIZE//VAL_SUBSPLITS

model_history = model.fit(train_dataset, epochs=EPOCHS,
                          steps_per_epoch=STEPS_PER_EPOCH,
                          validation_steps=VALIDATION_STEPS,
                          validation_data=test_dataset,
                          callbacks=[DisplayCallback()])


loss = model_history.history['loss']
val_loss = model_history.history['val_loss']

epochs = range(EPOCHS)

plt.figure()
plt.plot(epochs, loss, 'r', label='Training loss')
plt.plot(epochs, val_loss, 'bo',label='Validation loss')
plt.title('Training and Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss Value')
plt.ylim([0, 1])
plt.legend()
plt.show()

Вывод, который я получаю:

2020-04-13 13:01:54.199845: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 1996300000 Hz
2020-04-13 13:01:54.200689: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x5649e7de8b70 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2020-04-13 13:01:54.200737: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Host, Default Version
Train for 57 steps, validate for 11 steps
Epoch 1/20

Sample Prediction after epoch 1

Traceback (most recent call last):
  File "/home/buch/hello/segment.py", line 154, in <module>
    callbacks=[DisplayCallback()])
  File "/home/buch/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training.py", line 819, in fit
    use_multiprocessing=use_multiprocessing)
  File "/home/buch/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_v2.py", line 342, in fit
    total_epochs=epochs)
  File "/home/buch/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_v2.py", line 128, in run_one_epoch
    batch_outs = execution_function(iterator)
  File "/home/buch/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_v2_utils.py", line 98, in execution_function
    distributed_function(input_fn))
  File "/home/buch/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/eager/def_function.py", line 568, in __call__
    result = self._call(*args, **kwds)
  File "/home/buch/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/eager/def_function.py", line 615, in _call
    self._initialize(args, kwds, add_initializers_to=initializers)
  File "/home/buch/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/eager/def_function.py", line 497, in _initialize
    *args, **kwds))
  File "/home/buch/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/eager/function.py", line 2389, in _get_concrete_function_internal_garbage_collected
    graph_function, _, _ = self._maybe_define_function(args, kwargs)
  File "/home/buch/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/eager/function.py", line 2703, in _maybe_define_function
    graph_function = self._create_graph_function(args, kwargs)
  File "/home/buch/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/eager/function.py", line 2593, in _create_graph_function
    capture_by_value=self._capture_by_value),
  File "/home/buch/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/framework/func_graph.py", line 978, in func_graph_from_py_func
    func_outputs = python_func(*func_args, **func_kwargs)
  File "/home/buch/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/eager/def_function.py", line 439, in wrapped_fn
    return weak_wrapped_fn().__wrapped__(*args, **kwds)
  File "/home/buch/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_v2_utils.py", line 85, in distributed_function
    per_replica_function, args=args)
  File "/home/buch/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/distribute/distribute_lib.py", line 763, in experimental_run_v2
    return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
  File "/home/buch/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/distribute/distribute_lib.py", line 1819, in call_for_each_replica
    return self._call_for_each_replica(fn, args, kwargs)
  File "/home/buch/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/distribute/distribute_lib.py", line 2164, in _call_for_each_replica
    return fn(*args, **kwargs)
  File "/home/buch/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/autograph/impl/api.py", line 292, in wrapper
    return func(*args, **kwargs)
  File "/home/buch/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_v2_utils.py", line 433, in train_on_batch
    output_loss_metrics=model._output_loss_metrics)
  File "/home/buch/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_eager.py", line 312, in train_on_batch
    output_loss_metrics=output_loss_metrics))
  File "/home/buch/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_eager.py", line 273, in _process_single_batch
    model.optimizer.apply_gradients(zip(grads, trainable_weights))
AttributeError: 'list' object has no attribute 'apply_gradients'

Я сделал, как сказано в руководстве, но все же я получаю эту ошибку для некоторых причина. Попробовал поискать в Google, но не нашел ничего, что могло бы помочь. Кто-нибудь знает как это исправить?

1 Ответ

0 голосов
/ 13 апреля 2020

Вы передали список в аргумент оптимизатора.

Как сказал Matias Valdenegro, вам нужно просто передать строку adam in.

optimizer='adam'

Я просто переписал это, чтобы его можно было использовать в качестве ответа для закрытия этого вопроса.

Спасибо и надеюсь, что это поможет!

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...