Я делаю некоторый анализ tfrecords, хранящихся в GCP, но некоторые из tfrecords внутри файлов повреждены, поэтому, когда я запускаю свой конвейер и получаю более четырех ошибок, мой конвейер разрывается из-за this, Я думаю, что это ограничение DataFlowRunner, а не луча.
Вот мой сценарий обработки
import argparse
import apache_beam as beam
from apache_beam.options.pipeline_options import PipelineOptions
from apache_beam.metrics.metric import Metrics
from apache_beam.runners.direct import direct_runner
import tensorflow as tf
input_ = "path_to_bucket"
def _parse_example(serialized_example):
"""Return inputs and targets Tensors from a serialized tf.Example."""
data_fields = {
"inputs": tf.io.VarLenFeature(tf.int64),
"targets": tf.io.VarLenFeature(tf.int64)
}
parsed = tf.io.parse_single_example(serialized_example, data_fields)
inputs = tf.sparse.to_dense(parsed["inputs"])
targets = tf.sparse.to_dense(parsed["targets"])
return inputs, targets
class MyFnDo(beam.DoFn):
def __init__(self):
beam.DoFn.__init__(self)
self.input_tokens = Metrics.distribution(self.__class__, 'input_tokens')
self.output_tokens = Metrics.distribution(self.__class__, 'output_tokens')
self.num_examples = Metrics.counter(self.__class__, 'num_examples')
self.decode_errors = Metrics.counter(self.__class__, 'decode_errors')
def process(self, element):
# inputs = element.features.feature['inputs'].int64_list.value
# outputs = element.features.feature['outputs'].int64_list.value
try:
inputs, outputs = _parse_example(element)
self.input_tokens.update(len(inputs))
self.output_tokens.update(len(outputs))
self.num_examples.inc()
except Exception:
self.decode_errors.inc()
def main(argv):
parser = argparse.ArgumentParser()
parser.add_argument('--input', dest='input', default=input_, help='input tfrecords')
# parser.add_argument('--output', dest='output', default='gs://', help='output file')
known_args, pipeline_args = parser.parse_known_args(argv)
pipeline_options = PipelineOptions(pipeline_args)
with beam.Pipeline(options=pipeline_options) as p:
tfrecords = p | "Read TFRecords" >> beam.io.ReadFromTFRecord(known_args.input,
coder=beam.coders.ProtoCoder(tf.train.Example))
tfrecords | "count mean" >> beam.ParDo(MyFnDo())
if __name__ == '__main__':
main(None)
, так что в основном, как я могу пропустить поврежденные tfrecords и записать их номера во время моего анализа