Извлечение иллюстраций из изображения настольной игровой карты с помощью OpenCV - PullRequest
10 голосов
/ 22 марта 2020

Я написал небольшой сценарий в python, где я пытаюсь извлечь или обрезать ту часть игровой карты, которая представляет собой только иллюстрацию, удаляя все остальное. Я пробовал различные методы пороговых значений, но не смог добраться. Также обратите внимание, что я не могу просто записать вручную положение обложки, потому что оно не всегда имеет одинаковую позицию или размер, но всегда имеет прямоугольную форму angular, где все остальное - просто текст и границы.

enter image description here

from matplotlib import pyplot as plt
import cv2

img = cv2.imread(filename)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

ret,binary = cv2.threshold(gray, 0, 255, cv2.THRESH_OTSU | cv2.THRESH_BINARY)

binary = cv2.bitwise_not(binary)
kernel = np.ones((15, 15), np.uint8)

closing = cv2.morphologyEx(binary, cv2.MORPH_OPEN, kernel)

plt.imshow(closing),plt.show()

Токовый выход - самая близкая вещь, которую я мог получить. Я мог бы быть на правильном пути и попытаться еще немного спорить, чтобы нарисовать прямоугольник вокруг белых частей, но я не думаю, что это устойчивый метод:

Current output

Как последнее примечание, смотрите карты ниже, не все рамки имеют одинаковые размеры или позиции, но всегда есть произведение искусства с только текстом и рамками вокруг него. Это не должно быть супер точно вырезано, но ясно, что искусство - это «область» карты, окруженная другими областями, содержащими некоторый текст. Моя цель - попытаться как можно лучше охватить область искусства.

enter image description here

enter image description here

Ответы [ 3 ]

3 голосов
/ 25 марта 2020

Я использовал преобразование линии Хафа для обнаружения линейных частей изображения. Пересечения всех линий были использованы для построения всех возможных прямоугольников, которые не содержат других точек пересечения. Поскольку та часть карты, которую вы ищете, всегда является самой большой из этих прямоугольников (по крайней мере, в предоставленных вами образцах), я просто выбрал самый большой из этих прямоугольников в качестве победителя. Скрипт работает без взаимодействия с пользователем.

import cv2
import numpy as np
from collections import defaultdict

def segment_by_angle_kmeans(lines, k=2, **kwargs):
    #Groups lines based on angle with k-means.
    #Uses k-means on the coordinates of the angle on the unit circle 
    #to segment `k` angles inside `lines`.

    # Define criteria = (type, max_iter, epsilon)
    default_criteria_type = cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER
    criteria = kwargs.get('criteria', (default_criteria_type, 10, 1.0))
    flags = kwargs.get('flags', cv2.KMEANS_RANDOM_CENTERS)
    attempts = kwargs.get('attempts', 10)

    # returns angles in [0, pi] in radians
    angles = np.array([line[0][1] for line in lines])
    # multiply the angles by two and find coordinates of that angle
    pts = np.array([[np.cos(2*angle), np.sin(2*angle)]
                    for angle in angles], dtype=np.float32)

    # run kmeans on the coords
    labels, centers = cv2.kmeans(pts, k, None, criteria, attempts, flags)[1:]
    labels = labels.reshape(-1)  # transpose to row vec

    # segment lines based on their kmeans label
    segmented = defaultdict(list)
    for i, line in zip(range(len(lines)), lines):
        segmented[labels[i]].append(line)
    segmented = list(segmented.values())
    return segmented

def intersection(line1, line2):
    #Finds the intersection of two lines given in Hesse normal form.
    #Returns closest integer pixel locations.
    #See https://stackoverflow.com/a/383527/5087436

    rho1, theta1 = line1[0]
    rho2, theta2 = line2[0]

    A = np.array([
        [np.cos(theta1), np.sin(theta1)],
        [np.cos(theta2), np.sin(theta2)]
    ])
    b = np.array([[rho1], [rho2]])
    x0, y0 = np.linalg.solve(A, b)
    x0, y0 = int(np.round(x0)), int(np.round(y0))
    return [[x0, y0]]


def segmented_intersections(lines):
    #Finds the intersections between groups of lines.

    intersections = []
    for i, group in enumerate(lines[:-1]):
        for next_group in lines[i+1:]:
            for line1 in group:
                for line2 in next_group:
                    intersections.append(intersection(line1, line2)) 
    return intersections

def rect_from_crossings(crossings):
    #find all rectangles without other points inside
    rectangles = []

    # Search all possible rectangles
    for i in range(len(crossings)):
        x1= int(crossings[i][0][0])
        y1= int(crossings[i][0][1])

        for j in range(len(crossings)):
            x2= int(crossings[j][0][0])
            y2= int(crossings[j][0][1])

            #Search all points
            flag = 1
            for k in range(len(crossings)):
                x3= int(crossings[k][0][0])
                y3= int(crossings[k][0][1])

                #Dont count double (reverse rectangles)
                if (x1 > x2 or y1 > y2):
                    flag = 0
                #Dont count rectangles with points inside   
                elif ((((x3 >= x1) and (x2 >= x3))and (y3 > y1) and (y2 > y3) or ((x3 > x1) and (x2 > x3))and (y3 >= y1) and (y2 >= y3))):    
                    if(i!=k and j!=k):    
                        flag = 0

            if flag:
                rectangles.append([[x1,y1],[x2,y2]])

    return rectangles

if __name__ == '__main__':
    #img = cv2.imread('TAJFp.jpg')
    #img = cv2.imread('Bj2uu.jpg')
    img = cv2.imread('yi8db.png')

    width = int(img.shape[1])
    height = int(img.shape[0])

    scale = 380/width
    dim = (int(width*scale), int(height*scale))
    # resize image
    img = cv2.resize(img, dim, interpolation = cv2.INTER_AREA) 

    img2 = img.copy()
    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    gray = cv2.GaussianBlur(gray,(5,5),cv2.BORDER_DEFAULT)

    # Parameters of Canny and Hough may have to be tweaked to work for as many cards as possible
    edges = cv2.Canny(gray,10,45,apertureSize = 7)
    lines = cv2.HoughLines(edges,1,np.pi/90,160)

    segmented = segment_by_angle_kmeans(lines)
    crossings = segmented_intersections(segmented)
    rectangles = rect_from_crossings(crossings)

    #Find biggest remaining rectangle
    size = 0
    for i in range(len(rectangles)):
        x1 = rectangles[i][0][0]
        x2 = rectangles[i][1][0]
        y1 = rectangles[i][0][1]
        y2 = rectangles[i][1][1]

        if(size < (abs(x1-x2)*abs(y1-y2))):
            size = abs(x1-x2)*abs(y1-y2)
            x1_rect = x1
            x2_rect = x2
            y1_rect = y1
            y2_rect = y2

    cv2.rectangle(img2, (x1_rect,y1_rect), (x2_rect,y2_rect), (0,0,255), 2)
    roi = img[y1_rect:y2_rect, x1_rect:x2_rect]

    cv2.imshow("Output",roi)
    cv2.imwrite("Output.png", roi)
    cv2.waitKey()

Это результаты с предоставленными вами образцами:

Image1

Image2

Image3

Код для нахождения пересечения линий можно найти здесь: найти точку пересечения двух линий, нарисованных с помощью линий opencv

Вы можете узнать больше о Hough Lines здесь .

0 голосов
/ 25 марта 2020

Я не думаю, что можно автоматически обрезать ROI художественного произведения, используя традиционные методы обработки изображений, из-за динамического c характера цветов, размеров, местоположений и текстур для каждой карты. Вы должны изучить машинное / глубокое обучение и обучить свой собственный классификатор, если хотите сделать это автоматически. Вместо этого, вот ручной подход, чтобы выбрать и обрезать stati c ROI из изображения.

Идея состоит в том, чтобы использовать cv2.setMouseCallback() и обработчики событий для определения, была ли нажата или отпущена мышь. Для этой реализации вы можете извлечь графическую область интереса, удерживая левую кнопку мыши и перетаскивая ее, чтобы выбрать нужную область интереса. После того, как вы выбрали нужный ROI, нажмите c, чтобы обрезать и сохранить ROI. Вы можете сбросить ROI, используя правую кнопку мыши.

image image image

Сохраненные графические объекты

image image

image

Код

import cv2

class ExtractArtworkROI(object):
    def __init__(self):
        # Load image
        self.original_image = cv2.imread('1.png')
        self.clone = self.original_image.copy()
        cv2.namedWindow('image')
        cv2.setMouseCallback('image', self.extractROI)
        self.selected_ROI = False

        # ROI bounding box reference points
        self.image_coordinates = []

    def extractROI(self, event, x, y, flags, parameters):
        # Record starting (x,y) coordinates on left mouse button click
        if event == cv2.EVENT_LBUTTONDOWN:
            self.image_coordinates = [(x,y)]

        # Record ending (x,y) coordintes on left mouse button release
        elif event == cv2.EVENT_LBUTTONUP:
            # Remove old bounding box
            if self.selected_ROI:
                self.clone = self.original_image.copy()

            # Draw rectangle 
            self.selected_ROI = True
            self.image_coordinates.append((x,y))
            cv2.rectangle(self.clone, self.image_coordinates[0], self.image_coordinates[1], (36,255,12), 2)

            print('top left: {}, bottom right: {}'.format(self.image_coordinates[0], self.image_coordinates[1]))
            print('x,y,w,h : ({}, {}, {}, {})'.format(self.image_coordinates[0][0], self.image_coordinates[0][1], self.image_coordinates[1][0] - self.image_coordinates[0][0], self.image_coordinates[1][1] - self.image_coordinates[0][1]))

        # Clear drawing boxes on right mouse button click
        elif event == cv2.EVENT_RBUTTONDOWN:
            self.selected_ROI = False
            self.clone = self.original_image.copy()

    def show_image(self):
        return self.clone

    def crop_ROI(self):
        if self.selected_ROI:
            x1 = self.image_coordinates[0][0]
            y1 = self.image_coordinates[0][1]
            x2 = self.image_coordinates[1][0]
            y2 = self.image_coordinates[1][1]

            # Extract ROI
            self.cropped_image = self.original_image.copy()[y1:y2, x1:x2]

            # Display and save image
            cv2.imshow('Cropped Image', self.cropped_image)
            cv2.imwrite('ROI.png', self.cropped_image)
        else:
            print('Select ROI before cropping!')

if __name__ == '__main__':
    extractArtworkROI = ExtractArtworkROI()
    while True:
        cv2.imshow('image', extractArtworkROI.show_image())
        key = cv2.waitKey(1)

        # Close program with keyboard 'q'
        if key == ord('q'):
            cv2.destroyAllWindows()
            exit(1)

        # Crop ROI
        if key == ord('c'):
            extractArtworkROI.crop_ROI()
0 голосов
/ 25 марта 2020

Мы знаем, что карты имеют прямые границы по осям X и Y. Мы можем использовать это, чтобы извлечь части изображения. Следующий код реализует обнаружение горизонтальных и вертикальных линий на изображении.

import cv2
import numpy as np

def mouse_callback(event, x, y, flags, params):
    global num_click
    if num_click < 2 and event == cv2.EVENT_LBUTTONDOWN:
        num_click = num_click + 1
        print(num_click)
        global upper_bound, lower_bound, left_bound, right_bound
        upper_bound.append(max(i for i in hor if i < y) + 1)
        lower_bound.append(min(i for i in hor if i > y) - 1)
        left_bound.append(max(i for i in ver if i < x) + 1)
        right_bound.append(min(i for i in ver if i > x) - 1)

filename = 'image.png'
thr = 100  # edge detection threshold
lined = 50  # number of consequtive True pixels required an axis to be counted as line
num_click = 0  # select only twice
upper_bound, lower_bound, left_bound, right_bound = [], [], [], []
winname = 'img'

cv2.namedWindow(winname)
cv2.setMouseCallback(winname, mouse_callback)

img = cv2.imread(filename, 1)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
bw = cv2.Canny(gray, thr, 3*thr)

height, width, _ = img.shape

# find horizontal lines
hor = []
for i in range (0, height-1):
    count = 0
    for j in range (0, width-1):
        if bw[i,j]:
            count = count + 1
        else:
            count = 0
        if count >= lined:
            hor.append(i)
            break

# find vertical lines
ver = []
for j in range (0, width-1):
    count = 0
    for i in range (0, height-1):
        if bw[i,j]:
            count = count + 1
        else:
            count = 0
        if count >= lined:
            ver.append(j)
            break

# draw lines
disp_img = np.copy(img)
for i in hor:
    cv2.line(disp_img, (0, i), (width-1, i), (0,0,255), 1)
for i in ver:
    cv2.line(disp_img, (i, 0), (i, height-1), (0,0,255), 1)

while num_click < 2:
    cv2.imshow(winname, disp_img)
    cv2.waitKey(10)
disp_img = img[min(upper_bound):max(lower_bound), min(left_bound):max(right_bound)]
cv2.imshow(winname, disp_img)
cv2.waitKey()   # Press any key to exit
cv2.destroyAllWindows()

Вам просто нужно щелкнуть две области, чтобы включить. Пример области щелчка и соответствующий результат:

lines result_of_lines

Результаты других изображений:

result_2 result_3

...