Я работаю над Spyder, чтобы создать модель глубокого обучения на машине с графическим процессором. Я обнаружил, что я работаю на процессоре, и мой код работает долго. Сначала я скачал GPU tenorflow, но не знаю, как это сделать. начать работать на GPU.
Я использовал {with tf.device("cpu"):
}, но когда я пишу nvidia-smi на терминале, я не обнаружил запущенных процессов.
Я также использовал {import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"<br>
os.environ["CUDA_VISIBLE_DEVICES"] = ""
}, но он не работает.
Как заставить мой код Spyder работать на GPU вместо процессора на Ubuntu?
Любая помощь будет признателен.
код:
def createModel():
with tf.device("cpu"):
input_shape=(1, 22, 5, 3844)
model = Sequential()
model.add(Conv3D(16, (22, 5, 5), strides=(1, 2, 2), padding='same',activation='relu',data_format= "channels_first", input_shape=input_shape))
model.add(keras.layers.MaxPooling3D(pool_size=(1, 2, 2),data_format= "channels_first", padding='same'))
model.add(BatchNormalization())
model.add(Conv3D(32, (1, 3, 3), strides=(1, 1,1), padding='same',data_format= "channels_first", activation='relu'))#incertezza se togliere padding
model.add(keras.layers.MaxPooling3D(pool_size=(1,2, 2),data_format= "channels_first", ))
model.add(BatchNormalization())
model.add(Conv3D(64, (1,3, 3), strides=(1, 1,1), padding='same',data_format= "channels_first", activation='relu'))#incertezza se togliere padding
model.add(keras.layers.MaxPooling3D(pool_size=(1,2, 2),data_format= "channels_first",padding='same' ))
model.add(BatchNormalization())
model.add(Dense(64, input_dim=64,kernel_regularizer=regularizers.l2(0.0001), activity_regularizer=regularizers.l1(0.0001)))
model.add(Flatten())
model.add(Dropout(0.5))
model.add(Dense(256, activation='sigmoid'))
model.add(Dropout(0.5))
model.add(Dense(2, activation='softmax'))
opt_adam = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
model.compile(loss='categorical_crossentropy', optimizer=opt_adam, metrics=['accuracy'])
return model