Простая регрессия Logisti c с помощью Statsmodels: добавление перехвата и визуализация уравнения регрессии Logisti c - PullRequest
1 голос
/ 02 мая 2020

Используя Statsmodels, я пытаюсь сгенерировать простую регрессионную модель логистики c, чтобы предсказать, курит человек или нет (курит), основываясь на его росте (Hgt).

У меня такое чувство, что Перехват должен быть включен в регрессионную модель logisti c, но я не уверен, как реализовать ее с помощью функции add_constant (). Кроме того, я не уверен, почему генерируется приведенная ниже ошибка.

Это набор данных, Pulse.CSV: https://drive.google.com/file/d/1FdUK9p4Dub4NXsc-zHrYI-AGEEBkX98V/view?usp=sharing

Полный код и выходные данные находятся в этом Файл PDF: https://drive.google.com/file/d/1kHlrAjiU7QvFXF2a7tlTSFPgfpq9bOXJ/view?usp=sharing

import numpy as np
import pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
raw_data = pd.read_csv('Pulse.csv')
raw_data
x1 = raw_data['Hgt']
y = raw_data['Smoke'] 
reg_log = sm.Logit(y,x1,missing='Drop')
results_log = reg_log.fit()
def f(x,b0,b1):
    return np.array(np.exp(b0+x*b1) / (1 + np.exp(b0+x*b1)))
f_sorted = np.sort(f(x1,results_log.params[0],results_log.params[1]))
x_sorted = np.sort(np.array(x1))
plt.scatter(x1,y,color='C0')
plt.xlabel('Hgt', fontsize = 20)
plt.ylabel('Smoked', fontsize = 20)
plt.plot(x_sorted,f_sorted,color='C8')
plt.show()

---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
~/opt/anaconda3/lib/python3.7/site-packages/pandas/core/indexes/base.py in get_value(self, series, key)
   4729         try:
-> 4730             return self._engine.get_value(s, k, tz=getattr(series.dtype, "tz", None))
   4731         except KeyError as e1:
((( Truncated for brevity )))
IndexError: index out of bounds

1 Ответ

1 голос
/ 06 мая 2020

Перехват не добавляется по умолчанию в регрессии Statsmodels , но при необходимости вы можете включить его вручную.

import numpy as np
import pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
raw_data = pd.read_csv('Pulse.csv')
raw_data
x1 = raw_data['Hgt']
y = raw_data['Smoke'] 

x1 = sm.add_constant(x1)

reg_log = sm.Logit(y,x1,missing='Drop')
results_log = reg_log.fit()

results_log.summary()

def f(x,b0,b1):
    return np.array(np.exp(b0+x*b1) / (1 + np.exp(b0+x*b1)))
f_sorted = np.sort(f(x1,results_log.params[0],results_log.params[1]))
x_sorted = np.sort(np.array(x1))

plt.scatter(x1['Hgt'],y,color='C0')

plt.xlabel('Hgt', fontsize = 20)
plt.ylabel('Smoked', fontsize = 20)
plt.plot(x_sorted,f_sorted,color='C8')
plt.show()

Это также устранит ошибку, поскольку в вашем исходном коде не было перехвата. Источник

...