Я тренирую свои данные, используя Resnet50 в CNN, но данные перегоняются. Я хочу уменьшить переоснащение. Поэтому я хочу добавить Регуляризацию L2. Кто-нибудь может сказать мне, как добавить L2 в моем коде? Вы можете увидеть мой код ниже.
clear all
close all
imds = imageDatastore("E:\test\data", ...
'IncludeSubfolders',true,'LabelSource','foldernames');
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomize'); %70% for train 30% for test
net=resnet50; % for the first time,you have to download the package from Add-on explorer
%Replace Final Layers
numClasses = numel(categories(imdsTrain.Labels));
lgraph = layerGraph(net);
newFCLayer = fullyConnectedLayer(numClasses,'Name','new_fc','WeightLearnRateFactor',10,'BiasLearnRateFactor',10);
lgraph = replaceLayer(lgraph,'fc1000' ,newFCLayer);
newClassLayer = classificationLayer('Name','new_classoutput');
lgraph = replaceLayer(lgraph,'ClassificationLayer_predictions',newClassLayer);
%Train Network
inputSize = net.Layers(1).InputSize;
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain);
augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);
options = trainingOptions('sgdm', ...
'MiniBatchSize',10, ...
'MaxEpochs',20, ...
'InitialLearnRate',1e-3, ...
'Shuffle','every-epoch', ...
'ValidationData',augimdsValidation, ...
'ValidationFrequency',5, ...
'Verbose',false, ...
'Plots','training-progress');
trainedNet = trainNetwork(augimdsTrain,lgraph,options);
YPred = classify(trainedNet,augimdsValidation);
accuracy = mean(YPred == imdsValidation.Labels)
C = confusionmat(imdsValidation.Labels,YPred)
cm = confusionchart(imdsValidation.Labels,YPred);
cm.Title = 'Confusion Matrix for Validation Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';