я пытаюсь обучить данные, как показано ниже, но я получаю эту ошибку при выполнении
cv_results = model_selection.cross_val_score(model, X_train, y_train, cv=kfold, scoring=scoring)
ошибка:
The truth value of an array with more than one element is ambiguous. Use a.any() or a.all().
# Predicting the Test set results
y_pred = classifier.predict(X_test)
y_pred = (y_pred > 0.5)
# Making the Confusion Matrix
from sklearn.metrics import multilabel_confusion_matrix
cm = multilabel_confusion_matrix(y_test, y_pred)
scoring = 'accuracy'
# Define models to train
models = []
models.append(('K-Nearest Neighbours', KNeighborsClassifier(n_neighbors = 5)))
models.append(('Support Vector Machine', SVC()))
models.append(('Naive Bayes', GaussianNB()))
models.append(('Decision Tree', DecisionTreeClassifier()))
models.append(('Randoom Forest', RandomForestClassifier(n_estimators=100)))
models.append(('Logistic Regression', LogisticRegression()))
# evaluate each model in turn
results = []
names = []
for name, model in models:
kfold = model_selection.KFold(n_splits=10, random_state = 8)
cv_results = model_selection.cross_val_score(model, X_train, y_train, cv=kfold, scoring=scoring)
здесь обратная связь за ошибку:
/usr/local/lib/python3.6/dist-packages/scipy/sparse/base.py in __bool__(self)
285 return self.nnz != 0
286 else:
--> 287 raise ValueError("The truth value of an array with more than one "
288 "element is ambiguous. Use a.any() or a.all().")
289 __nonzero__ = __bool__