Я только начал изучать набор Natural Language Took. Я пытаюсь классифицировать слова. Я в основном ищу вещи, людей, мест и организаций.
Пока что определение единственной строки текста работает в сценарии.
ex = 'John'
ne_tree = nltk.ne_chunk(pos_tag(word_tokenize(ex)))
print(ne_tree)
Вывод:
(S (PERSON John/NNP))
У меня вопрос, могу ли я указать весь столбец с помощью этого скрипта?
Моя таблица такая, как показано ниже.
ex2:
Order Text
0 John
1 Chicago
2 stuff
3 question
Порядок - это в основном индекс, который я создал. Идея заключается в том, что позже я могу разбить предложения на слова, сохранить ключ и таять. Текст - это то, что я хочу маркировать.
Когда я запускаю этот код, я получаю ошибку ниже. Возможно, я называю это неправильно, и мне нужно указать столбец? Спасибо за помощь.
ne_tree = nltk.ne_chunk(pos_tag(word_tokenize(ex2)))
print(ne_tree)
Ошибка:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-80-5d4582e937dd> in <module>
----> 1 ne_tree = nltk.ne_chunk(pos_tag(word_tokenize(ex3)))
2 print(ne_tree)
~\AppData\Local\Continuum\anaconda3\lib\site-packages\nltk\tokenize\__init__.py in word_tokenize(text, language, preserve_line)
142 :type preserve_line: bool
143 """
--> 144 sentences = [text] if preserve_line else sent_tokenize(text, language)
145 return [
146 token for sent in sentences for token in _treebank_word_tokenizer.tokenize(sent)
~\AppData\Local\Continuum\anaconda3\lib\site-packages\nltk\tokenize\__init__.py in sent_tokenize(text, language)
104 """
105 tokenizer = load('tokenizers/punkt/{0}.pickle'.format(language))
--> 106 return tokenizer.tokenize(text)
107
108
~\AppData\Local\Continuum\anaconda3\lib\site-packages\nltk\tokenize\punkt.py in tokenize(self, text, realign_boundaries)
1275 Given a text, returns a list of the sentences in that text.
1276 """
-> 1277 return list(self.sentences_from_text(text, realign_boundaries))
1278
1279 def debug_decisions(self, text):
~\AppData\Local\Continuum\anaconda3\lib\site-packages\nltk\tokenize\punkt.py in sentences_from_text(self, text, realign_boundaries)
1329 follows the period.
1330 """
-> 1331 return [text[s:e] for s, e in self.span_tokenize(text, realign_boundaries)]
1332
1333 def _slices_from_text(self, text):
~\AppData\Local\Continuum\anaconda3\lib\site-packages\nltk\tokenize\punkt.py in <listcomp>(.0)
1329 follows the period.
1330 """
-> 1331 return [text[s:e] for s, e in self.span_tokenize(text, realign_boundaries)]
1332
1333 def _slices_from_text(self, text):
~\AppData\Local\Continuum\anaconda3\lib\site-packages\nltk\tokenize\punkt.py in span_tokenize(self, text, realign_boundaries)
1319 if realign_boundaries:
1320 slices = self._realign_boundaries(text, slices)
-> 1321 for sl in slices:
1322 yield (sl.start, sl.stop)
1323
~\AppData\Local\Continuum\anaconda3\lib\site-packages\nltk\tokenize\punkt.py in _realign_boundaries(self, text, slices)
1360 """
1361 realign = 0
-> 1362 for sl1, sl2 in _pair_iter(slices):
1363 sl1 = slice(sl1.start + realign, sl1.stop)
1364 if not sl2:
~\AppData\Local\Continuum\anaconda3\lib\site-packages\nltk\tokenize\punkt.py in _pair_iter(it)
316 it = iter(it)
317 try:
--> 318 prev = next(it)
319 except StopIteration:
320 return
~\AppData\Local\Continuum\anaconda3\lib\site-packages\nltk\tokenize\punkt.py in _slices_from_text(self, text)
1333 def _slices_from_text(self, text):
1334 last_break = 0
-> 1335 for match in self._lang_vars.period_context_re().finditer(text):
1336 context = match.group() + match.group('after_tok')
1337 if self.text_contains_sentbreak(context):
TypeError: expected string or bytes-like object