Я совершенно новичок в Spark. Я использую версию Spark 2.3 и Python версию 3.7. На Windows 10, кстати. Я запускаю Jupyter Notebook для выполнения операций PySpark. Я изучаю курс Pluralsight (начало работы с Spark 2.0)
Я запускаю pyspark в Jupyter, используя следующие команды в командной строке Anaconda:
set PYSPARK_DRIVER_PYTHON = jupyter set PYSPARK_DRIVER_PYTHON_OPTS = ноутбук pyspark
После того, как ноутбук открывается:
Я запускаю следующие команды:
sc
from pyspark.sql.types import Row
from datetime import datetime
simple_data = sc.parallelize([1, "Alice", 50])
simple_data
simple_data.count()
simple_data.first()
Теперь, вот где это терпит неудачу: simple_data.first()
с нижеуказанной ошибкой :
Py4JJavaError Traceback (most recent call last)
<ipython-input-5-cc577dea1d9b> in <module>
----> 1 simple_data.first()
C:\spark\python\pyspark\rdd.py in first(self)
1374 ValueError: RDD is empty
1375 """
-> 1376 rs = self.take(1)
1377 if rs:
1378 return rs[0]
C:\spark\python\pyspark\rdd.py in take(self, num)
1356
1357 p = range(partsScanned, min(partsScanned + numPartsToTry, totalParts))
-> 1358 res = self.context.runJob(self, takeUpToNumLeft, p)
1359
1360 items += res
C:\spark\python\pyspark\context.py in runJob(self, rdd, partitionFunc, partitions, allowLocal)
999 # SparkContext#runJob.
1000 mappedRDD = rdd.mapPartitions(partitionFunc)
-> 1001 port = self._jvm.PythonRDD.runJob(self._jsc.sc(), mappedRDD._jrdd, partitions)
1002 return list(_load_from_socket(port, mappedRDD._jrdd_deserializer))
1003
C:\spark\python\lib\py4j-0.10.6-src.zip\py4j\java_gateway.py in __call__(self, *args)
1158 answer = self.gateway_client.send_command(command)
1159 return_value = get_return_value(
-> 1160 answer, self.gateway_client, self.target_id, self.name)
1161
1162 for temp_arg in temp_args:
C:\spark\python\pyspark\sql\utils.py in deco(*a, **kw)
61 def deco(*a, **kw):
62 try:
---> 63 return f(*a, **kw)
64 except py4j.protocol.Py4JJavaError as e:
65 s = e.java_exception.toString()
C:\spark\python\lib\py4j-0.10.6-src.zip\py4j\protocol.py in get_return_value(answer, gateway_client, target_id, name)
318 raise Py4JJavaError(
319 "An error occurred while calling {0}{1}{2}.\n".
--> 320 format(target_id, ".", name), value)
321 else:
322 raise Py4JError(
Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.runJob.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 1.0 failed 1 times, most recent failure: Lost task 0.0 in stage 1.0 (TID 4, localhost, executor driver): org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "C:\spark\python\pyspark\rdd.py", line 1354, in takeUpToNumLeft
yield next(iterator)
StopIteration
Это большой журнал ошибок, чем я вставил сюда. Я искал возможные решения и обновил Java jdk, используя conda install -c cyclus java-jdk
, но даже после этого ничего не изменилось.
Я немного застрял и не могу продолжить свой курс. Почему это работает для .count()
, но не для .first()
Как устранить эту ошибку? Чего мне не хватает?
Добавление полного сообщения об ошибке после опробования предложения @ Sparker0i в ответе:
Py4JJavaError Traceback (most recent call last)
<ipython-input-3-4dbbd81a7c5c> in <module>
2 #simple_data
3
----> 4 simple_data = sc.parallelize([[1, "Alice", 50]]).toDF()
5 simple_data.count()
6 simple_data.first()
C:\spark\python\pyspark\sql\session.py in toDF(self, schema, sampleRatio)
56 [Row(name=u'Alice', age=1)]
57 """
---> 58 return sparkSession.createDataFrame(self, schema, sampleRatio)
59
60 RDD.toDF = toDF
C:\spark\python\pyspark\sql\session.py in createDataFrame(self, data, schema, samplingRatio, verifySchema)
685
686 if isinstance(data, RDD):
--> 687 rdd, schema = self._createFromRDD(data.map(prepare), schema, samplingRatio)
688 else:
689 rdd, schema = self._createFromLocal(map(prepare, data), schema)
C:\spark\python\pyspark\sql\session.py in _createFromRDD(self, rdd, schema, samplingRatio)
382 """
383 if schema is None or isinstance(schema, (list, tuple)):
--> 384 struct = self._inferSchema(rdd, samplingRatio, names=schema)
385 converter = _create_converter(struct)
386 rdd = rdd.map(converter)
C:\spark\python\pyspark\sql\session.py in _inferSchema(self, rdd, samplingRatio, names)
353 :return: :class:`pyspark.sql.types.StructType`
354 """
--> 355 first = rdd.first()
356 if not first:
357 raise ValueError("The first row in RDD is empty, "
C:\spark\python\pyspark\rdd.py in first(self)
1374 ValueError: RDD is empty
1375 """
-> 1376 rs = self.take(1)
1377 if rs:
1378 return rs[0]
C:\spark\python\pyspark\rdd.py in take(self, num)
1356
1357 p = range(partsScanned, min(partsScanned + numPartsToTry, totalParts))
-> 1358 res = self.context.runJob(self, takeUpToNumLeft, p)
1359
1360 items += res
C:\spark\python\pyspark\context.py in runJob(self, rdd, partitionFunc, partitions, allowLocal)
999 # SparkContext#runJob.
1000 mappedRDD = rdd.mapPartitions(partitionFunc)
-> 1001 port = self._jvm.PythonRDD.runJob(self._jsc.sc(), mappedRDD._jrdd, partitions)
1002 return list(_load_from_socket(port, mappedRDD._jrdd_deserializer))
1003
C:\spark\python\lib\py4j-0.10.6-src.zip\py4j\java_gateway.py in __call__(self, *args)
1158 answer = self.gateway_client.send_command(command)
1159 return_value = get_return_value(
-> 1160 answer, self.gateway_client, self.target_id, self.name)
1161
1162 for temp_arg in temp_args:
C:\spark\python\pyspark\sql\utils.py in deco(*a, **kw)
61 def deco(*a, **kw):
62 try:
---> 63 return f(*a, **kw)
64 except py4j.protocol.Py4JJavaError as e:
65 s = e.java_exception.toString()
C:\spark\python\lib\py4j-0.10.6-src.zip\py4j\protocol.py in get_return_value(answer, gateway_client, target_id, name)
318 raise Py4JJavaError(
319 "An error occurred while calling {0}{1}{2}.\n".
--> 320 format(target_id, ".", name), value)
321 else:
322 raise Py4JError(
Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.runJob.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 1 times, most recent failure: Lost task 0.0 in stage 0.0 (TID 0, localhost, executor driver): org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "C:\spark\python\pyspark\rdd.py", line 1354, in takeUpToNumLeft
yield next(iterator)
StopIteration
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "C:\spark\python\lib\pyspark.zip\pyspark\worker.py", line 229, in main
File "C:\spark\python\lib\pyspark.zip\pyspark\worker.py", line 224, in process
File "C:\spark\python\lib\pyspark.zip\pyspark\serializers.py", line 372, in dump_stream
vs = list(itertools.islice(iterator, batch))
RuntimeError: generator raised StopIteration
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:298)
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:438)
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:421)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:252)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
at org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
at org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
at org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28)
at org.apache.spark.api.python.PythonRDD$$anonfun$1.apply(PythonRDD.scala:141)
at org.apache.spark.api.python.PythonRDD$$anonfun$1.apply(PythonRDD.scala:141)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2067)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2067)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1599)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1587)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1586)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1586)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:831)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:831)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:831)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1820)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1769)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1758)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:642)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2027)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2048)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2067)
at org.apache.spark.api.python.PythonRDD$.runJob(PythonRDD.scala:141)
at org.apache.spark.api.python.PythonRDD.runJob(PythonRDD.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "C:\spark\python\pyspark\rdd.py", line 1354, in takeUpToNumLeft
yield next(iterator)
StopIteration
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "C:\spark\python\lib\pyspark.zip\pyspark\worker.py", line 229, in main
File "C:\spark\python\lib\pyspark.zip\pyspark\worker.py", line 224, in process
File "C:\spark\python\lib\pyspark.zip\pyspark\serializers.py", line 372, in dump_stream
vs = list(itertools.islice(iterator, batch))
RuntimeError: generator raised StopIteration
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:298)
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:438)
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:421)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:252)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
at org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
at org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
at org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28)
at org.apache.spark.api.python.PythonRDD$$anonfun$1.apply(PythonRDD.scala:141)
at org.apache.spark.api.python.PythonRDD$$anonfun$1.apply(PythonRDD.scala:141)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2067)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2067)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
... 1 more