Я работаю над прогнозированием gam
модели со случайным эффектом для создания трехмерного графика поверхности по plot_ly
.
Вот мой код;
x <- runif(100)
y <- runif(100)
z <- x^2 + y + rnorm(100)
r <- rep(1,times=100) # random effect
r[51:100] <- 2 # replace 1 into 2, making two groups
df <- data.frame(x, y, z, r)
gam_fit <- gam(z ~ s(x) + s(y) + s(r,bs="re"), data = df) # fit
#create matrix data for `add_surface` function in `plot_ly`
newx <- seq(0, 1, len=20)
newy <- seq(0, 1, len=30)
newxy <- expand.grid(x = newx, y = newy)
z <- matrix(predict(gam_fit, newdata = newxy), 20, 30) # predict data as matrix
Однако последняя строка приводит к ошибке;
Error in model.frame.default(ff, data = newdata, na.action = na.act) :
variable lengths differ (found for 'r')
In addition: Warning message:
In predict.gam(gam_fit, newdata = newxy) :
not all required variables have been supplied in newdata!
Благодаря предыдущему ответу я уверен, что вышеуказанные коды работают без случайного эффекта, как в здесь .
Как я могу предсказать Гам модели со случайным эффектом?