Итак, я хочу запустить этот сценарий для нескольких файлов excel, поэтому вместо df3 я импортирую несколько файлов excel и объединю все результаты в фрейм данных.
Вот основной пример кода
import pandas as pd
d = {'City': ['Tokyo','Tokyo','Lisbon','Tokyo','Tokyo','Lisbon','Lisbon','Lisbon','Tokyo','Lisbon','Tokyo','Tokyo','Tokyo','Lisbon','Tokyo','Tokyo','Lisbon','Lisbon','Lisbon','Tokyo','Lisbon','Tokyo'],
'Card': ['Visa','Visa','Master Card','Master Card','Visa','Master Card','Visa','Visa','Master Card','Visa','Master Card','Visa','Visa','Master Card','Master Card','Visa','Master Card','Visa','Visa','Master Card','Visa','Master Card'],
'Colateral':['Yes','No','Yes','No','No','No','No','Yes','Yes','No','Yes','Yes','No','Yes','No','No','No','Yes','Yes','No','No','No'],
'Client Number':[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22],
'DebtPaid':[0.8,0.1,0.5,0.30,0,0.2,0.4,1,0.60,1,0.5,0.2,0,0.3,0,0,0.2,0,0.1,0.70,0.5,0.1]}
df = pd.DataFrame(data=d)
df2=df.groupby(['City','Card','Colateral'])['DebtPaid'].\
value_counts(bins=[-0.001,0,0.25,0.5,0.75,1,1.001,2],normalize=True)
d = {'City': ['Tokyo','Tokyo','Lisbon','Tokyo','Tokyo','Lisbon','Lisbon','Lisbon','Tokyo','Lisbon','Tokyo','Tokyo','Tokyo','Lisbon','Tokyo','Tokyo','Lisbon','Lisbon','Lisbon','Tokyo','Lisbon','Tokyo'],
'Card': ['Visa','Visa','Master Card','Master Card','Visa','Master Card','Visa','Visa','Master Card','Visa','Master Card','Visa','Visa','Master Card','Master Card','Visa','Master Card','Visa','Visa','Master Card','Visa','Master Card'],
'Colateral':['Yes','No','Yes','No','No','No','No','Yes','Yes','No','Yes','Yes','No','Yes','No','No','No','Yes','Yes','No','No','No'],
'Client Number':[23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44],
'Total Debt':[100,240,200,1000,50,20,345,10,600,40,50,20,100,30,100,600,200,200,150,700,50,120]}
df3 = pd.DataFrame(data=d)
#First merge dataframes
df_out = df2.rename('Prob').reset_index().merge(df3, on=['City', 'Card', 'Colateral'])
#Use the right and left attributes of pd.Interval
df_out['lower'] = [x.left for x in df_out['DebtPaid']]
df_out['upper'] = [x.right for x in df_out['DebtPaid']]
#Calculate lower and upper partial prices
df_out['l_partial'] = df_out[['lower', 'Prob', 'Total Debt']].prod(axis=1)
df_out['u_partial'] = df_out[['upper', 'Prob', 'Total Debt']].prod(axis=1)
#Sum partial prices to get lower and upper price grouped on Client Number
final = df_out.groupby('Client Number')[['l_partial', 'u_partial']]\
.agg(lower_price=('l_partial', 'sum'),
upper_price=('u_partial', 'sum')).clip(0,np.inf)
w = (final['upper_price'].sum() + final['lower_price'].sum()) / 2
y = 1000
z = ((w/y)-1)*100
d1 = {'1': [w,y,z],
'Index':['Estimate','Real','Error']}
results = pd.DataFrame(data=d1).set_index('Index')
results
Проблема в том, что этот сценарий выполняется только для одного фрейма данных.
Это то, что я пытался сделать, чтобы безуспешно запустить сценарий с несколькими файлами Excel:
files = [1,2,3,4,5]
for x in files:
df3 = pd.read_excel(str(x) + '.xlsx')
#First merge dataframes
df_out = df2.rename('Prob').reset_index().merge(df3, on=['City', 'Card', 'Colateral'])
#Use the right and left attributes of pd.Interval
df_out['lower'] = [x.left for x in df_out['DebtPaid']]
df_out['upper'] = [x.right for x in df_out['DebtPaid']]
#Calculate lower and upper partial prices
df_out['l_partial'] = df_out[['lower', 'Prob', 'Total Debt']].prod(axis=1)
df_out['u_partial'] = df_out[['upper', 'Prob', 'Total Debt']].prod(axis=1)
#Sum partial prices to get lower and upper price grouped on Client Number
final = df_out.groupby('Client Number')[['l_partial', 'u_partial']]\
.agg(lower_price=('l_partial', 'sum'),
upper_price=('u_partial', 'sum')).clip(0,np.inf)
w = (final['upper_price'].sum() + final['lower_price'].sum()) / 2
y = 1000
z = ((w/y)-1)*100
d1 = {x : [w,y,z],
'Index':['Estimate','Real','Error']}
results = pd.DataFrame(data=d1).set_index('Index')
results
введите описание изображения здесь
Показывает результаты только для одного файла Excel. Вы знаете, как я могу это решить?