• 1000 1004 *
Я бы хотел, чтобы мой вывод был похож на фрейм данных ниже.
+------+---+---+---+---+
|userId| A| B| C| D|
+------+---+---+---+---+
| 1| A| 0| 1| 0|
| 1| B| 2| 2| 0|
| 1| C| 5| 9| 0|
| 2| X| 1| 9| 1|
| 2| Y| 20| 0| 1|
| 2| Z| 5| 6| 1|
+------+---+---+---+---+
Я попытался сделать это с помощью explode, получив декартово произведение. Есть ли способ сохранить количество записей до 6 строк вместо 18.
scala> val data = sc.parallelize(Seq("""{"userId": 1,"varA": ["A", "B", "C"], "varB": [0, 2, 5], "varC": [1, 2, 9], "varD": [0, 0, 0]}""","""{"userId": 2,"varA": ["X", "Y", "Z"], "varB": [1, 20, 5], "varC": [9, 0, 6], "varD": [1, 1, 1]}"""))
scala> val df = spark.read.json(data)
scala> df.show()
+------+---------+----------+---------+---------+
|userId| varA| varB| varC| varD|
+------+---------+----------+---------+---------+
| 1|[A, B, C]| [0, 2, 5]|[1, 2, 9]|[0, 0, 0]|
| 2|[X, Y, Z]|[1, 20, 5]|[9, 0, 6]|[1, 1, 1]|
+------+---------+----------+---------+---------+
scala>
scala> df.printSchema
root
|-- userId: long (nullable = true)
|-- varA: array (nullable = true)
| |-- element: string (containsNull = true)
|-- varB: array (nullable = true)
| |-- element: long (containsNull = true)
|-- varC: array (nullable = true)
| |-- element: long (containsNull = true)
|-- varD: array (nullable = true)
| |-- element: long (containsNull = true)
scala>
scala> val zip_str = udf((x: Seq[String], y: Seq[Long]) => x.zip(y))
zip_str: org.apache.spark.sql.expressions.UserDefinedFunction = UserDefinedFunction(<function2>,ArrayType(StructType(StructField(_1,StringType,true), StructField(_2,LongType,false)),true),Some(List(ArrayType(StringType,true), ArrayType(LongType,false))))
scala> val zip_long = udf((x: Seq[Long], y: Seq[Long]) => x.zip(y))
zip_long: org.apache.spark.sql.expressions.UserDefinedFunction = UserDefinedFunction(<function2>,ArrayType(StructType(StructField(_1,LongType,false), StructField(_2,LongType,false)),true),Some(List(ArrayType(LongType,false), ArrayType(LongType,false))))
scala> df.withColumn("zip_1", explode(zip_str($"varA", $"varB"))).withColumn("zip_2", explode(zip_long($"varC", $"varD"))).select($"userId", $"zip_1._1".alias("A"),$"zip_1._2".alias("B"),$"zip_2._1".alias("C"),$"zip_2._2".alias("D")).show()
+------+---+---+---+---+
|userId| A| B| C| D|
+------+---+---+---+---+
| 1| A| 0| 1| 0|
| 1| A| 0| 2| 0|
| 1| A| 0| 9| 0|
| 1| B| 2| 1| 0|
| 1| B| 2| 2| 0|
| 1| B| 2| 9| 0|
| 1| C| 5| 1| 0|
| 1| C| 5| 2| 0|
| 1| C| 5| 9| 0|
| 2| X| 1| 9| 1|
| 2| X| 1| 0| 1|
| 2| X| 1| 6| 1|
| 2| Y| 20| 9| 1|
| 2| Y| 20| 0| 1|
| 2| Y| 20| 6| 1|
| 2| Z| 5| 9| 1|
| 2| Z| 5| 0| 1|
| 2| Z| 5| 6| 1|
+------+---+---+---+---+
scala>
Здесь используется некоторая ссылка
https://intellipaat.com/community/17050/explode-transpose-multiple-columns-in-spark-sql-table