Я хочу использовать MinMaxScaler
из sklearn
для масштабирования данных тестирования и обучения перед их анализом.
Я следовал инструкциям (https://mc.ai/an-introduction-on-time-series-forecasting-with-simple-neura-networks-lstm/), но Я получаю сообщение об ошибке ValueError: Expected 2D array, got 1D array instead
.
Я попытался посмотреть Печать прогноза ValueError: ожидаемый 2D-массив, вместо него 1D-массив , но я получаю сообщение об ошибке, если пытаюсь train = train.reshape(-1, 1)
или test = test.reshape(-1, 1)
, потому что они являются сериями (сообщение об ошибке AttributeError: 'Series' object has no attribute 'reshape'
)
Как мне лучше решить эту проблему?
# Import libraries
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
# Create MWE dataset
data = [['1981-11-03', 510], ['1982-11-03', 540], ['1983-11-03', 480],
['1984-11-03', 490], ['1985-11-03', 492], ['1986-11-03', 380],
['1987-11-03', 440], ['1988-11-03', 640], ['1989-11-03', 560],
['1990-11-03', 660], ['1991-11-03', 610], ['1992-11-03', 480]]
df = pd.DataFrame(data, columns = ['Date', 'Tickets'])
# Set 'Date' to datetime data type
df['Date'] = pd.to_datetime(df['Date'])
# Set 'Date to index
df = df.set_index(['Date'], drop=True)
# Split dataset into train and test
split_date = pd.Timestamp('1989-11-03')
df = df['Tickets']
train = df.loc[:split_date]
test = df.loc[split_date:]
# Scale train and test data
scaler = MinMaxScaler(feature_range=(-1, 1))
train_sc = scaler.fit_transform(train)
test_sc = scaler.transform(test)
X_train = train_sc[:-1]
y_train = train_sc[1:]
X_test = test_sc[:-1]
y_test = test_sc[1:]
# ERROR MESSAGE
ValueError: Expected 2D array, got 1D array instead:
array=[510. 540. 480. 490. 492. 380. 440. 640. 560.].
Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.